-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRegularTest.py
200 lines (164 loc) · 6.7 KB
/
RegularTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import utils
import csv
import os
import librosa
import argparse
from scipy.io import wavfile
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import autoencoder
import PESQScore
import time
#mask = gru(noise_mag)
#print(mask.size())
#approx_mag = noise_mag * mask
#loss = F.mse_loss(approxMag,magSpect)
parser = argparse.ArgumentParser()
parser.add_argument('--test_directory', type=str,
default='spectograms/noise/test/', help="path for the data")
parser.add_argument('--noise_type', type=str,
default='babble/', help="noise type")
parser.add_argument('--noise_snr', type=str,
default='-6', help="noise snr to test at")
parser.add_argument('--model_directory', type=str,
default='models/normal_train/', help="path where model weight lies")
parser.add_argument('--model_name', type=str,
default='noise_-6db/', help="name of actual model weights")
parser.add_argument('--save_audio', type=bool,
default=False, help="if u want to save the audio files")
parser.add_argument('--window_size', type=int,
default=5, help="size of window on each side")
parser.add_argument('--exp_name', type=str,
default='test', help="name of your experiment")
args = parser.parse_args()
test_directory = args.test_directory
noise_type = args.noise_type
noise_snr = args.noise_snr
model_directory = args.model_directory
model_name = args.model_name
save_audio = args.save_audio
window_size = args.window_size
exp_name = args.exp_name
model_load_path = model_directory + model_name + 'model_auto.h5'
test_load_path = test_directory + noise_type
print('Model Name ')
print(model_load_path + '\n')
print('Test Directory ')
print(test_load_path + '\n')
print('noise type test')
print(noise_type + '\n')
print('noise snr test')
print(noise_snr + '\n')
print('experiment name')
print(exp_name + '\n')
total_test = 1680
noise_spect_name = 'spect_' + noise_snr + '.npy'
print('noise spectogram name')
print(noise_spect_name + '\n')
frame_size = 11
clean_spect_name = 'spect_clean.npy'
print('clean spectogram name')
print(clean_spect_name + '\n')
audio_clean_name = 'audio_clean.WAV'
audio_noise_name = 'audio_' + noise_snr + '.WAV'
model = autoencoder.Auto(1771, 161)
state_dict = torch.load(model_load_path, map_location=lambda storage, loc: storage)
model.load_state_dict(state_dict['state_dict'])
def test(model, clean, noise):
criterion = nn.MSELoss()
magSz, totalTime = noise.shape
specWidth = window_size*2+1
inputSz = magSz * specWidth
batch = np.zeros((totalTime-window_size*2, inputSz))
for idx in range(totalTime-window_size*2):
batch[idx, :] = noise[:, idx:idx+specWidth].flatten()
batch_tensor = autoencoder.np_to_variable(batch)
reconstruct = model(batch_tensor).data.cpu().numpy().T
loss = criterion(autoencoder.np_to_variable(reconstruct),autoencoder.np_to_variable(clean[:,window_size:-1*window_size]))
mse = loss.data[0]
#mse = ((reconstruct - clean[:,window_size:-1*window_size]) ** 2).mean(axis=None)
return reconstruct, mse
if torch.cuda.is_available():
print('cuda available....')
model.cuda()
model.eval()
MSE = []
PESQ_Noise = []
PESQ_Approx = []
STOI = []
with open(test_load_path + noise_snr + '_' + exp_name + '.txt','a') as f:
f.write(model_load_path + '\n' + test_load_path + '\n')
for idx in range(total_test):
print('Testing File: %d' % idx)
#path where the folder is
test_file_path = test_load_path + str(idx) + '/'
#get the clean magnitudes and the noise magnitude at the specific SNR
clean_mag = np.load(test_file_path + clean_spect_name)
noise_mag = np.load(test_file_path + noise_spect_name)
#Get the actual clean audio and noise audio
full_audio_clean_name = test_file_path + audio_clean_name
full_audio_noise_name = test_file_path + audio_noise_name
#print(full_audio_clean_name)
#print(full_audio_noise_name)
[clean_audio,fs] = librosa.load(full_audio_clean_name,16000)
[noise_audio,fs] = librosa.load(full_audio_noise_name,16000)
"""
clean_spect = librosa.stft(clean_audio,n_fft=320,hop_length=160)
magC,phaseC = librosa.magphase(clean_spect)
clean_audio_new = librosa.istft(magC*phaseC,hop_length=160)
noise_spect = librosa.stft(noise_audio,n_fft=320,hop_length=160)
magN,phaseN = librosa.magphase(noise_spect)
noise_audio_new = librosa.istft(magN*phaseN,hop_length=160)
print(clean_audio_new.shape)
print(noise_audio_new.shape)
print('new audio sizes')
"""
approx_clean_mag, mse = test(model, clean_mag, noise_mag)
### WOULD PASS THROUGH approx_clean_mag into reconstruct.
### RETURNS Approx_clean_audio
### this is just for testing
approx_clean_audio = utils.reconstruct_clean(noise_audio, approx_clean_mag)
approx_clean_name =test_file_path + 'approx_clean_' + noise_snr + '_' + exp_name + '.WAV'
print('approx clean audio length')
print(approx_clean_audio.shape)
if save_audio:
print('saving audio...')
wavfile.write(approx_clean_name, 16000,approx_clean_audio)
# wavfile.write(full_audio_clean_name,16000,clean_audio_new)
# wavfile.write(full_audio_noise_name,16000,noise_audio_new)
#np.save(test_file_path + 'approx_clean_mag_' + noise_snr + '_' + exp_name + '.npy', approx_clean_mag)
with open(test_load_path + noise_snr + '_' + exp_name + '.txt','a') as f:
f.write(full_audio_clean_name + '\t' + full_audio_noise_name + '\n')
f.write(full_audio_clean_name + '\t' + approx_clean_name + '\n' )
"""
# logging the scores
time.sleep(10)
print('PESQ Scores')
[clean,fs] = librosa.load(full_audio_clean_name,16000)
[approx,fs] = librosa.load(approx_clean_name,16000)
print(clean.shape)
print(approx.shape)
pesq_approx = PESQScore.pesq(full_audio_clean_name,approx_clean_name,16000)
pesq_noise =PESQScore.pesq(full_audio_clean_name,full_audio_noise_name,16000)
pesq_clean = PESQScore.pesq(full_audio_clean_name,full_audio_clean_name,16000)
print('done')
PESQ_Approx.append(pesq_approx)
PESQ_Noise.append(pesq_noise)
print('Pesq Noise ' + pesq_noise)
print('Pesq Approx ' + pesq_approx)
print('Pesq Clean ' + pesq_clean)
"""
MSE.append(mse)
print('MSE %f' % mse)
print(model_name)
print(noise_snr)
#print('Mean Noise PESQ Score %f' % np.mean(PESQ_Noise))
#print('Mean Approx PESQ Score %f' % np.mean(PESQ_Approx))
print('Mean MSE Score %f' % np.mean(MSE))
print('Minimum mse %d' %np.argmin(MSE))
print('Max mse %d' % np.argmax(MSE))
###pass approx_clean_audio,clean_audio,noise_audio,clean_mag,noise_mag,approx_clean_mag into function
### returns all the scores: PESQ,STOI,SDR anythiniiiiig