-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlstm_mask.py
558 lines (434 loc) · 20.9 KB
/
lstm_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
import matplotlib
matplotlib.use('Agg')
import sys
import argparse
import numpy as np
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.autograd import Variable
from LoadNoise import LoadData
from torch.utils.data import DataLoader
from TestAddNoiseLoader import TestSpect
import utils
import matplotlib.pyplot as plt
from adam_new import Adam_Custom
from copy import deepcopy
import time
use_cuda = torch.cuda.is_available()
#use_cuda =0
print('Cuda')
print(use_cuda)
CUDA_VISIBLE_DEVICES=4,5
os.environ["CUDA_VISIBLE_DEVICES"]="4,5"
FloatTensor = torch.cuda.FloatTensor if use_cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if use_cuda else torch.LongTensor
ByteTensor = torch.cuda.ByteTensor if use_cuda else torch.ByteTensor
Tensor = FloatTensor
def test_mask(model,clean,noise):
criterion = nn.MSELoss()
noise_batch = np_to_variable(noise)
clean_batch = np_to_variable(clean)
approx_clean = model(noise_batch)
loss = criterion(approx_clean, clean_batch)
mse = loss.data[0]
return approx_clean.data.cpu().numpy().T, mse
def np_to_variable(x, requires_grad=False, dtype=torch.FloatTensor):
v = Variable(torch.from_numpy(x).type(dtype), requires_grad=requires_grad)
if torch.cuda.is_available():
v = v.cuda()
return v
class LSTM_Mask(nn.Module):
#make argparse dropout
def __init__(self, input_size = 161, hidden_size = 256 ,num_layers = 2, dropout = 0 , bidirectional = False):
super(LSTM_Mask, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.dropout = dropout
self.bidirectional = bidirectional
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers,batch_first=True,dropout=dropout,bidirectional=bidirectional)
self.fc1 = nn.Linear(self.hidden_size, input_size)
def forward(self, x):
out, _ = self.lstm(x)
output_mask = F.sigmoid(self.fc1(out))
approx_clean = x * output_mask
return approx_clean
class Denoise():
def __init__(self,model,train_lr,meta_lr):
self.model = model
self.criterion = nn.MSELoss()
#Add L2 regularization through weight decay
#self.optimizer = torch.optim.Adam(self.model.parameters(), lr=train_lr,weight_decay=0.5)
#make this arg parse
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=train_lr,weight_decay=1e-6)
# self.meta_optimizer = torch.optim.Adam(self.model.parameters(), lr=meta_lr)
self.meta_optimizer = Adam_Custom(self.model.parameters(), lr=meta_lr,weight_decay=1e-6)
self.stamp = time.strftime("%Y%m%d-%H%M%S")
def get_weights(self):
curr_model = {'state_dict': self.model.state_dict()}
# if(mode is 'train'):
# curr_model = {'state_dict': self.model.state_dict()}
# # 'optimizer': self.optimizer.state_dict()}
# elif(mode is 'meta'):
# curr_model = {'state_dict': self.model.state_dict()}
# # 'optimizer': self.meta_optimizer.state_dict()}
return curr_model
def set_weights(self,curr_model):
self.model.load_state_dict(curr_model['state_dict'])
# if(mode is 'train'):
# self.model.load_state_dict(curr_model['state_dict'])
# # self.optimizer.load_state_dict(curr_model['optimizer'])
# elif(mode is 'meta'):
# self.model.load_state_dict(curr_model['state_dict'])
# # self.meta_optimizer.load_state_dict(curr_model['optimizer'])
def train_normal(self,noisy,clean,j,i,model_path):
#print(noisy.shape)
#print(clean.shape)
noisy_th = np_to_variable(noisy, requires_grad=True)
clean_th = np_to_variable(clean)
output_th = self.model(noisy_th)
self.loss = self.criterion(output_th, clean_th)
self.optimizer.zero_grad()
self.loss.backward()
self.optimizer.step()
# if j%5==0 and i==0:
# now saving model for every epoch with time stamp
state = {
'epoch': j,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}
str_path = model_path + '/model_lstm_'+ str(self.stamp) + '_' + str(j) + '.h5'
torch.save(state,str_path)
# print("Saving the model")
return self.loss.data[0]
def train_maml(self,meta_train_noisy,meta_train_clean,train_datapts,meta_train_datapts,num_iter,test_file,file_name,noise_type):
num_tasks,num_data,_,_ = meta_train_noisy.shape
path_name = './figures/maml_train_plots/' + '/'
str_path1 = 'training_loss_maml_mask_lstm_total_' + file_name + '.png'
plot1_name = os.path.join(path_name,str_path1)
model_path = 'models/lstm_mask_maml_train/' + file_name
print(model_path)
if not os.path.exists(path_name):
os.makedirs(path_name)
if not os.path.exists(model_path):
os.makedirs(model_path)
loader = TestSpect('dataset/meta_data/test/test.txt',test_file, SNR=-6, noise=noise_type)
print('Testing '+ noise_type)
test_loader = DataLoader(loader,batch_size=1,shuffle=True,num_workers=0)
test_error_all = []
K = train_datapts
D = meta_train_datapts
theta_list = []
num_epoch = 0
for i in range(num_iter):
if(i%100 == 0):
num_epoch +=1
# Get the theta
if i == 0:
theta= self.get_weights()
# Individual gradient updates theta_i's ---Training mode
for t in range(num_tasks):
#Sample K datapoints from the task t
idx_train = np.random.randint(num_data,size=K)
noisy = meta_train_noisy[t,idx_train,:,:]
clean = meta_train_clean[t,idx_train,:,:]
noisy = np_to_variable(noisy, requires_grad=True)
clean = np_to_variable(clean, requires_grad=False)
output1 = self.model(noisy)
# Initialize the network with current network weights
self.set_weights(theta)
# Train the network with the given K samples
self.loss = self.criterion(output1, clean)
self.optimizer.zero_grad()
self.loss.backward()
self.optimizer.step()
#Update params theta_i
if i == 0:
theta_list.append(self.get_weights())
else:
theta_list[t] = self.get_weights()
# Theta parameter update --- Meta-training mode
combined_loss = 0
theta_copy = deepcopy(theta)
for t in range(num_tasks):
#Sample K datapoints from the task t
idx_meta = np.random.randint(num_data,size=D)
noisy = meta_train_noisy[t,idx_meta,:,:]
clean = meta_train_clean[t,idx_meta,:,:]
noisy = np_to_variable(noisy, requires_grad=True)
clean = np_to_variable(clean, requires_grad=False)
# output2 = self.model(noisy)
#Get the loss w.r.t the theta_i network
self.set_weights(theta_list[t])
approx_clean = self.model(noisy)
self.loss_outer = self.criterion(approx_clean, clean)
# Set the model weights to theta before training
#Train with this theta on the D samples
self.set_weights(theta_copy)
self.meta_optimizer.zero_grad()
grads = torch.autograd.grad(self.loss_outer, self.model.parameters())
#Pass the gradients directly to the Custom Adam optimizer
self.set_weights(theta)
self.meta_optimizer.step(grads)
# self.set_weights(theta)
# self.meta_optimizer.zero_grad()
# self.loss.backward()
# self.meta_optimizer.step()
# Theta will now have the updated parameters
theta = self.get_weights()
#Add up the losses from each of these networks
combined_loss += self.loss_outer.data[0]
print("Average Loss in iteration %s is %.4f" %(i,combined_loss/num_tasks))
if (i%100 == 0):
print('Epoch %s done' %num_epoch)
state = {
'epoch': num_epoch,
'state_dict': self.model.state_dict(),
'optimizer': self.meta_optimizer.state_dict(),
}
str_path = model_path + '/maml_lstm_' + str(num_epoch) + '.h5'
torch.save(state,str_path)
print("Saving the model")
print('Testing....')
test_error = []
#for j, batch in enumerate(test_loader):
# if(j==0):
# break
#print('Testing File: %d' % i)
#get the clean magnitudes and the noise magnitude at the specific SNR
# clean_mag = batch['clean_mag'].numpy()
# noise_mag = batch['noise_mag'].numpy()
# _ , mse = test_mask(self.model, clean_mag, noise_mag)
# test_error.append(mse)
#test_error_all.append(np.mean(test_error))
#print(test_error_all)
def main(args):
args = utils.parse_arguments()
num_epochs = args.num_epochs
train_lr = args.train_lr
meta_lr = args.meta_lr
exp_name = args.exp_name
noise_type = args.noise_type
train_all = args.train_all
reg_train = args.reg_train
num_spect = args.num_spectograms
save_name = args.save_file_name
test_file = args.test_file
train_datapts = 461
meta_train_datapts = 461
num_iter = 10000
model = LSTM_Mask()
if torch.cuda.is_available():
model.cuda()
model.train()
dae = Denoise(model,train_lr,meta_lr)
if reg_train == 1:
print('Regular Training.....')
# Create plot
fig1 = plt.figure()
ax1 = fig1.gca()
ax1.set_title('Loss vs Epochs')
if train_all == 1:
print('Training All....')
#all_noise = ['engine','factory1','babble']
all_noise =['factory1','babble']#,'engine','ops'] # ONLY CHANGE THIS ONE. change to whatever noise types you want to train with
file_name = exp_name
print(all_noise)
else:
print('Training ' + noise_type)
all_noise = [noise_type]
file_name = exp_name
noisy_total = []
clean_total =[]
for n in all_noise:
print(n)
noisy_data1 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/' + n + '/train/noise_-6.npy')
noisy_data2 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/'+ n + '/train/noise_-3.npy')
noisy_data3 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/' + n + '/train/noise_0.npy')
noisy_data4 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/'+ n + '/train/noise_3.npy')
noisy_data5 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/' + n + '/train/noise_6.npy')
clean_data = np.load('spectograms/spectograms_train'+str(num_spect)+'/clean/train/clean_frames_' + n + '.npy')
noisy_sq1 = np.reshape(noisy_data1,[noisy_data1.shape[0]*noisy_data1.shape[1],noisy_data1.shape[2],noisy_data1.shape[3]])
noisy_sq2 = np.reshape(noisy_data2,[noisy_data2.shape[0]*noisy_data2.shape[1],noisy_data2.shape[2],noisy_data2.shape[3]])
noisy_sq3 = np.reshape(noisy_data3,[noisy_data3.shape[0]*noisy_data3.shape[1],noisy_data3.shape[2],noisy_data3.shape[3]])
noisy_sq4 = np.reshape(noisy_data4,[noisy_data4.shape[0]*noisy_data4.shape[1],noisy_data4.shape[2],noisy_data4.shape[3]])
noisy_sq5 = np.reshape(noisy_data5,[noisy_data5.shape[0]*noisy_data5.shape[1],noisy_data5.shape[2],noisy_data5.shape[3]])
noisy_total.extend(noisy_sq1)
noisy_total.extend(noisy_sq2)
noisy_total.extend(noisy_sq3)
noisy_total.extend(noisy_sq4)
noisy_total.extend(noisy_sq5)
clean_sq1 = np.reshape(clean_data,[clean_data.shape[0]*clean_data.shape[1],clean_data.shape[2],clean_data.shape[3]])
clean_total.extend(clean_sq1)
clean_total.extend(clean_sq1)
clean_total.extend(clean_sq1)
clean_total.extend(clean_sq1)
clean_total.extend(clean_sq1)
noisy_total = np.array(noisy_total)
print(noisy_total.shape)
clean_total = np.array(clean_total)
print(clean_total.shape)
path_name = './figures/train_plots/' + file_name + '/'
str_path1 = 'training_loss_normal_mask_lstm_total_' + exp_name + '.png'
plot1_name = os.path.join(path_name,str_path1)
model_path = 'models/lstm_mask_normal_train/' + file_name
print(model_path)
if not os.path.exists(path_name):
os.makedirs(path_name)
if not os.path.exists(model_path):
os.makedirs(model_path)
# Normal training with one SNR
num_samples = int(noisy_total.shape[0])
num_batches = num_samples/128
loader = TestSpect('dataset/meta_data/test/test.txt',test_file, SNR=-3, noise=noise_type)
print('Testing '+ noise_type)
test_loader = DataLoader(loader,batch_size=1,shuffle=True,num_workers=0)
test_error_all = []
print('Training.....')
for j in range(num_epochs):
# test after every epochs
print('Testing....')
test_error = []
for i, batch in enumerate(test_loader):
# only test first 50 sample. This is randrom for every epochs
if(i==50):
break
#get the clean magnitudes and the noise magnitude at the specific SNR
clean_mag = batch['clean_mag'].numpy()
noise_mag = batch['noise_mag'].numpy()
_ , mse = test_mask(dae.model, clean_mag, noise_mag)
test_error.append(mse)
test_error_all.append(np.mean(test_error))
print(test_error_all)
shuffle_idx = np.random.permutation(noisy_total.shape[0])
noisy_total = noisy_total[shuffle_idx]
clean_total = clean_total[shuffle_idx]
total_loss = 0
step = 128
for i in range(0,num_samples-step,step):
clean = clean_total[i:i+step,:]
noise = noisy_total[i:i+step,:]
# noise = np.log(noise)
if(noise.shape[0] is not 0):
loss = dae.train_normal(noise,clean,j+1,i,model_path)
# print("Batch - %s : %s , Loss - %1.4f" %(i, i+step,loss))
total_loss += loss
print('epoch [{}/{}], MSE_loss:{:.8f}'.format(j + 1, num_epochs, total_loss/num_batches))
ax1.scatter(j+1, total_loss)
if j%100 == 0:
ax1.figure.savefig(plot1_name)
print(test_error_all)
else:
print("meta training.....")
all_noise = ['babble','factory1','engine','bucc','ops','bike']
all_babble_noise = []
all_babble_clean = []
all_factory1_noise = []
all_factory1_clean = []
all_engine_noise = []
all_engine_clean = []
all_bucc_noise = []
all_bucc_clean = []
all_ops_noise = []
all_ops_clean = []
all_bike_noise = []
all_bike_clean = []
for n in all_noise:
print(n)
noisy_total = []
clean_total = []
noisy_data1 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/' + n + '/train/noise_-6.npy')
noisy_data2 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/'+ n + '/train/noise_-3.npy')
noisy_data3 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/' + n + '/train/noise_0.npy')
noisy_data4 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/'+ n + '/train/noise_3.npy')
noisy_data5 = np.load('spectograms/spectograms_train'+str(num_spect)+'/noise/' + n + '/train/noise_6.npy')
clean_data = np.load('spectograms/spectograms_train'+str(num_spect)+'/clean/train/clean_frames_' + n + '.npy')
noisy_sq1 = np.reshape(noisy_data1,[noisy_data1.shape[0]*noisy_data1.shape[1],noisy_data1.shape[2],noisy_data1.shape[3]])
noisy_sq2 = np.reshape(noisy_data2,[noisy_data2.shape[0]*noisy_data2.shape[1],noisy_data2.shape[2],noisy_data2.shape[3]])
noisy_sq3 = np.reshape(noisy_data3,[noisy_data3.shape[0]*noisy_data3.shape[1],noisy_data3.shape[2],noisy_data3.shape[3]])
noisy_sq4 = np.reshape(noisy_data4,[noisy_data4.shape[0]*noisy_data4.shape[1],noisy_data4.shape[2],noisy_data4.shape[3]])
noisy_sq5 = np.reshape(noisy_data5,[noisy_data5.shape[0]*noisy_data5.shape[1],noisy_data5.shape[2],noisy_data5.shape[3]])
noisy_total.append(noisy_sq1)
noisy_total.append(noisy_sq2)
noisy_total.append(noisy_sq3)
noisy_total.append(noisy_sq4)
noisy_total.append(noisy_sq5)
clean_sq1 = np.reshape(clean_data,[clean_data.shape[0]*clean_data.shape[1],clean_data.shape[2],clean_data.shape[3]])
clean_total.append(clean_sq1)
clean_total.append(clean_sq1)
clean_total.append(clean_sq1)
clean_total.append(clean_sq1)
clean_total.append(clean_sq1)
if n == 'factory1':
print('factory1 copy')
all_factory1_noise = noisy_total
all_factory1_clean = clean_total
elif n == 'babble':
print('babble copy ')
all_babble_noise = noisy_total
all_babble_clean = clean_total
elif n == 'engine':
print('engine copy ')
all_engine_noise = noisy_total
all_engine_clean = clean_total
elif n == 'bucc':
print('bucc copy ')
all_bucc_noise = noisy_total
all_bucc_clean = clean_total
elif n == 'ops':
print('ops copy ')
all_ops_noise = noisy_total
all_ops_clean = clean_total
elif n == 'bike':
print('bike copy ')
all_bike_noise = noisy_total
all_bike_clean = clean_total
print("Babble shape")
print(all_babble_noise.shape,all_babble_clean.shape)
print("Factory shape")
print(all_factory1_noise.shape,all_factory1_clean.shape)
print("Engine shape")
print(all_engine_noise.shape,all_engine_clean.shape)
print("Bucc shape")
print(all_bucc_noise.shape,all_bucc_clean.shape)
print("ops shape")
print(all_ops_noise.shape,all_ops_clean.shape)
print("bike shape")
print(all_bike_noise.shape,all_bike_clean.shape)
maml_noisy_data = []
maml_clean_data = []
maml_noisy_data.extend(all_babble_noise)
maml_noisy_data.extend(all_factory1_noise)
maml_noisy_data.extend(all_engine_noise)
maml_noisy_data.extend(all_bucc_noise)
maml_noisy_data.extend(all_ops_noise)
maml_noisy_data.extend(all_bike_noise)
maml_clean_data.extend(all_babble_clean)
maml_clean_data.extend(all_factory1_clean)
maml_clean_data.extend(all_engine_clean)
maml_clean_data.extend(all_bucc_clean)
maml_clean_data.extend(all_ops_clean)
maml_clean_data.extend(all_bike_clean)
maml_noisy_data = np.array(maml_noisy_data)
maml_clean_data = np.array(maml_clean_data)
print("Size of total training")
print(maml_noisy_data.shape)
print(maml_clean_data.shape)
# print(all_factory1_noise.shape)
# maml_data_noise = np.zeros((len(all_noise),all_babble_noise.shape[0],all_babble_noise.shape[1],all_babble_noise.shape[2]))
# maml_data_clean = np.zeros((len(all_noise),all_babble_noise.shape[0],all_babble_noise.shape[1],all_babble_noise.shape[2]))
# maml_data_noise[0] = all_babble_noise
# maml_data_noise[1] = all_factory1_noise
# maml_data_clean[0] = all_babble_clean
# maml_data_clean[1] = all_factory1_clean
# print(maml_data_noise.shape)
# print(maml_data_clean.shape)
file_name = exp_name
#Meta-training with five SNR
dae.train_maml(maml_noisy_data,maml_clean_data,train_datapts,meta_train_datapts,num_iter,test_file,file_name,noise_type)
if __name__ == '__main__':
main(sys.argv)