-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTagFirstParser.py
255 lines (206 loc) · 10.6 KB
/
TagFirstParser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import math
import random
import argparse
import configparser
import torch
import torch.utils.data
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
from Helpers import build_data, process_batch
import Helpers
import Loader
from Modules import Biaffine, LongerBiaffine, LinearAttention, ShorterBiaffine
random.seed(1337)
np.random.seed(1337)
parser = argparse.ArgumentParser()
parser.add_argument('--debug', action='store_true')
parser.add_argument('--cuda', action='store_true')
parser.add_argument('--config', default='./config.ini')
parser.add_argument('--train', default='./data/en-ud-train.conllu.sem')
parser.add_argument('--dev', default='./data/en-ud-dev.conllu.sem')
parser.add_argument('--test', default='./data/en-ud-test.conllu.sem')
args = parser.parse_args()
config = configparser.ConfigParser()
config.read(args.config)
BATCH_SIZE = int(config['parser']['BATCH_SIZE'])
EMBED_DIM = int(config['parser']['EMBED_DIM'])
LSTM_DIM = int(config['parser']['LSTM_DIM'])
LSTM_LAYERS = int(config['parser']['LSTM_LAYERS'])
REDUCE_DIM_ARC = int(config['parser']['REDUCE_DIM_ARC'])
REDUCE_DIM_LABEL = int(config['parser']['REDUCE_DIM_LABEL'])
LEARNING_RATE = float(config['parser']['LEARNING_RATE'])
EPOCHS = int(config['parser']['EPOCHS'])
class CharEmbedding(torch.nn.Module):
def __init__(self, sizes, args):
super().__init__()
self.embedding_chars = torch.nn.Embedding(sizes['chars'], EMBED_DIM)
self.lstm = torch.nn.LSTM(EMBED_DIM, LSTM_DIM, LSTM_LAYERS,
batch_first=True, bidirectional=False, dropout=0.33)
self.attention = LinearAttention(LSTM_DIM)
def forward(self, forms, pack_sent):
# input: B x S x W
batch_size, max_words, max_chars = forms.size()
forms = forms.contiguous().view(batch_size * max_words, -1)
indexes = (forms == 0).sum(dim=1).type(torch.LongTensor)
y, indexes = torch.sort(indexes, 0)
temp = forms[indexes]
restore = temp[np.argsort(indexes.data)]
assert restore.data.tolist() == forms.data.tolist()
forms.size()
out = self.embedding_chars(forms)
pack = (temp != 0).sum(dim=1)
pack[pack == 0] = 1
# embeds = torch.nn.utils.rnn.pack_padded_sequence(out, pack.data.tolist(), batch_first=True)
embeds, (_, c) = self.lstm(out)
# embeds = embeds.contiguous().view(batch_size, max_words, max_chars, -1)
embeds = self.attention(embeds)
c = c[:, -1, :]
# embeds, _ = torch.nn.utils.rnn.pad_packed_sequence(embeds, batch_first=True)
return embeds
class Parser(torch.nn.Module):
def __init__(self, sizes, args):
super().__init__()
self.use_cuda = args.cuda
self.debug = args.debug
# self.embeddings_chars = CharEmbedding(sizes, EMBED_DIM)
self.embeddings_forms = torch.nn.Embedding(sizes['vocab'], EMBED_DIM)
self.embeddings_tags = torch.nn.Embedding(sizes['postags'], EMBED_DIM)
self.lstm = torch.nn.LSTM(500 + sizes['semtags'], LSTM_DIM, LSTM_LAYERS,
batch_first=True, bidirectional=True, dropout=0.33)
self.mlp_head = torch.nn.Linear(2 * LSTM_DIM, REDUCE_DIM_ARC)
self.mlp_dep = torch.nn.Linear(2 * LSTM_DIM, REDUCE_DIM_ARC)
self.mlp_deprel_head = torch.nn.Linear(2 * LSTM_DIM, REDUCE_DIM_LABEL)
self.mlp_deprel_dep = torch.nn.Linear(2 * LSTM_DIM, REDUCE_DIM_LABEL)
self.mlp_tag = torch.nn.Linear(300, 150)
self.out_tag = torch.nn.Linear(150, sizes['semtags'])
self.lstm_tag = torch.nn.LSTM(EMBED_DIM, 150, LSTM_LAYERS - 2,
batch_first=True, bidirectional=True, dropout=0.33)
self.relu = torch.nn.ReLU()
self.dropout = torch.nn.Dropout(p=0.33)
# self.biaffine = Biaffine(REDUCE_DIM_ARC + 1, REDUCE_DIM_ARC, BATCH_SIZE)
self.biaffine = ShorterBiaffine(REDUCE_DIM_ARC)
self.label_biaffine = LongerBiaffine(REDUCE_DIM_LABEL, REDUCE_DIM_LABEL, sizes['deprels'])
self.criterion = torch.nn.CrossEntropyLoss(ignore_index=-1)
self.optimiser = torch.optim.Adam(self.parameters(), lr=LEARNING_RATE, betas=(0.9, 0.9))
if self.use_cuda:
self.biaffine.cuda()
self.label_biaffine.cuda()
def forward(self, forms, tags, semtags, pack):
# embed and dropout forms and tags; concat
# TODO: same mask embedding
# char_embeds = self.embeddings_chars(chars, pack)
form_embeds = self.dropout(self.embeddings_forms(forms))
tag_embeds = self.dropout(self.embeddings_tags(tags))
#print(tag_embeds.size())
#embeds = torch.cat([form_embeds, tag_embeds], dim=2)
# pack/unpack for LSTM_tag
tagging_embeds = torch.nn.utils.rnn.pack_padded_sequence(form_embeds, pack.tolist(), batch_first=True)
output_tag, _ = self.lstm_tag(tagging_embeds)
output_tag, _ = torch.nn.utils.rnn.pad_packed_sequence(output_tag, batch_first=True)
mlp_tag = self.dropout(self.relu(self.mlp_tag(output_tag)))
y_pred_semtag = self.out_tag(mlp_tag)
print(output_tag.size())
embeds = torch.cat([form_embeds, tag_embeds, output_tag, y_pred_semtag], dim = 2)
print(embeds.size())
# pack/unpack for LSTM_parse
embeds = torch.nn.utils.rnn.pack_padded_sequence(embeds, pack.tolist(), batch_first=True)
output, _ = self.lstm(embeds)
output, _ = torch.nn.utils.rnn.pad_packed_sequence(output, batch_first=True)
# predict heads
reduced_head_head = self.dropout(self.relu(self.mlp_head(output)))
reduced_head_dep = self.dropout(self.relu(self.mlp_dep(output)))
y_pred_head = self.biaffine(reduced_head_head, reduced_head_dep)
if self.debug:
return y_pred_head, Variable(torch.rand(y_pred_head.size()))
# predict deprels using heads
reduced_deprel_head = self.dropout(self.relu(self.mlp_deprel_head(output)))
reduced_deprel_dep = self.dropout(self.relu(self.mlp_deprel_dep(output)))
predicted_labels = y_pred_head.max(2)[1]
selected_heads = torch.stack([torch.index_select(reduced_deprel_head[n], 0, predicted_labels[n])
for n, _ in enumerate(predicted_labels)])
y_pred_label = self.label_biaffine(selected_heads, reduced_deprel_dep)
y_pred_label = Helpers.extract_best_label_logits(predicted_labels, y_pred_label, pack)
if self.use_cuda:
y_pred_label = y_pred_label.cuda()
return y_pred_head, y_pred_label, y_pred_semtag
def train_(self, epoch, train_loader):
self.train()
train_loader.init_epoch()
for i, batch in enumerate(train_loader):
(x_forms, pack), x_tags, y_heads, y_deprels, x_sem = batch.form, batch.upos, batch.head, batch.deprel, batch.sem
mask = torch.zeros(pack.size()[0], max(pack)).type(torch.LongTensor)
for n, size in enumerate(pack):
mask[n, 0:size] = 1
y_pred_head, y_pred_deprel, y_pred_semtag = self(x_forms, x_tags, x_sem, pack)
# reshape for cross-entropy
batch_size, longest_sentence_in_batch = y_heads.size()
# predictions: (B x S x S) => (B * S x S)
# heads: (B x S) => (B * S)
y_pred_head = y_pred_head.view(batch_size * longest_sentence_in_batch, -1)
y_heads = y_heads.contiguous().view(batch_size * longest_sentence_in_batch)
# predictions: (B x S x D) => (B * S x D)
# heads: (B x S) => (B * S)
y_pred_deprel = y_pred_deprel.view(batch_size * longest_sentence_in_batch, -1)
y_deprels = y_deprels.contiguous().view(batch_size * longest_sentence_in_batch)
y_pred_semtag = y_pred_semtag.view(batch_size * longest_sentence_in_batch, -1)
x_sem = x_sem.contiguous().view(batch_size * longest_sentence_in_batch)
# sum losses
train_loss = self.criterion(y_pred_head, y_heads)
if not self.debug:
train_loss += self.criterion(y_pred_deprel, y_deprels)
train_loss += self.criterion(y_pred_semtag, x_sem)
self.zero_grad()
train_loss.backward()
self.optimiser.step()
print("Epoch: {}\t{}/{}\tloss: {}".format(epoch, (i + 1) * len(x_forms), len(train_loader.dataset), train_loss.data[0]))
def evaluate_(self, test_loader):
las_correct, uas_correct, tags_correct, total = 0, 0, 0, 0
self.eval()
for i, batch in enumerate(test_loader):
(x_forms, pack), x_tags, y_heads, y_deprels, x_sem = batch.form, batch.upos, batch.head, batch.deprel, batch.sem
mask = torch.zeros(pack.size()[0], max(pack)).type(torch.LongTensor)
for n, size in enumerate(pack):
mask[n, 0:size] = 1
# get labels
# TODO: ensure well-formed tree
y_pred_head, y_pred_deprel, y_pred_semtag = [i.max(2)[1] for i in self(x_forms, x_tags, x_sem, pack)]
mask = mask.type(torch.ByteTensor)
if self.use_cuda:
mask = mask.cuda()
mask = Variable(mask)
heads_correct = ((y_heads == y_pred_head) * mask)
deprels_correct = ((y_deprels == y_pred_deprel) * mask)
#tags_correct = ((x_tags == y_pred_tag) * mask)
# excepts should never trigger; leave them in just in case
try:
uas_correct += heads_correct.nonzero().size(0)
except RuntimeError:
pass
try:
las_correct += (heads_correct * deprels_correct).nonzero().size(0)
except RuntimeError:
pass
try:
tags_correct += ((x_sem == y_pred_semtag) * mask).nonzero().size(0)
except RuntimeError:
pass
total += mask.nonzero().size(0)
print("UAS = {}/{} = {}\nLAS = {}/{} = {}\nTAG = {}/{} = {}".format(uas_correct, total, uas_correct / total,
las_correct, total, las_correct / total,
tags_correct, total, tags_correct / total))
if __name__ == '__main__':
# args
(train_loader, dev_loader, test_loader), sizes = Loader.get_iterators(args, BATCH_SIZE)
parser = Parser(sizes, args)
if args.cuda:
parser.cuda()
# training
print("Training")
for epoch in range(EPOCHS):
parser.train_(epoch, train_loader)
parser.evaluate_(dev_loader)
# test
print("Eval")
parser.evaluate_(test_loader)