-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexample.py
63 lines (52 loc) · 1.99 KB
/
example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gymnasium as gym
from stable_baselines3 import PPO
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
import matplotlib.pyplot as plt
import numpy as np
from quantum_forge import QuantumForgeEnv
# Register the environment
gym.register(
id='QuantumForge-v0',
entry_point='quantum_forge:QuantumForgeEnv',
)
def run_simulation(backend):
print(f"\nRunning simulation with {backend} backend:")
# Create vectorized environment
env = make_vec_env('QuantumForge-v0', n_envs=4, env_kwargs={'backend': backend, 'num_qubits': 3, 'noise_level': 0.01})
# Create and train the agent
model = PPO("MlpPolicy", env, verbose=1, learning_rate=0.0003, n_steps=2048, batch_size=64, n_epochs=10, gamma=0.99, ent_coef=0.01)
model.learn(total_timesteps=50000)
# Evaluate the agent
mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=10)
print(f"Mean reward: {mean_reward:.2f} +/- {std_reward:.2f}")
# Run a single episode for visualization
obs = env.reset()
rewards = []
for _ in range(100):
action, _states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
rewards.append(reward)
if done.any():
break
# Plot rewards
plt.figure(figsize=(10, 5))
plt.plot(rewards)
plt.title(f'Rewards over time ({backend} backend)')
plt.xlabel('Step')
plt.ylabel('Reward')
plt.savefig(f'rewards_{backend}.png')
plt.close()
# Visualize final quantum state
final_state = env.render(mode='rgb_array')[0]
plt.figure(figsize=(10, 5))
plt.imshow(final_state)
plt.title(f'Final Quantum State ({backend} backend)')
plt.axis('off')
plt.savefig(f'final_state_{backend}.png')
plt.close()
env.close()
# Run simulations with both backends
run_simulation('qiskit')
run_simulation('cirq')
print("\nSimulations completed. Check the generated PNG files for visualizations.")