-
Notifications
You must be signed in to change notification settings - Fork 27
/
dataset.py
140 lines (120 loc) · 7.93 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import cv2
from tqdm import tqdm
from PIL import Image
from torch.utils import data
from torchvision import transforms
from preproc import preproc
from config import Config
from glob import glob
Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning
config = Config()
_class_labels_TR_sorted = 'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
class MyData(data.Dataset):
def __init__(self, data_root, image_size, is_train=True):
self.size_train = image_size
self.size_test = image_size
self.keep_size = not config.size
self.data_size = (config.size, config.size)
self.is_train = is_train
self.load_all = config.load_all
self.device = config.device
self.dataset = data_root.replace('\\', '/').split('/')[-1]
if self.is_train and config.auxiliary_classification:
self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
self.transform_image = transforms.Compose([
transforms.Resize(self.data_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
][self.load_all or self.keep_size:])
self.transform_label = transforms.Compose([
transforms.Resize(self.data_size),
transforms.ToTensor(),
][self.load_all or self.keep_size:])
## 'im' and 'gt' need modifying
image_root = os.path.join(data_root, 'im')
self.image_paths = [os.path.join(image_root, p) for p in os.listdir(image_root)]
self.label_paths = [p.replace('/im/', '/gt/').replace('.jpg', '.png') for p in self.image_paths]
if self.load_all:
self.images_loaded, self.labels_loaded = [], []
self.class_labels_loaded = []
# for image_path, label_path in zip(self.image_paths, self.label_paths):
for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)):
_image = cv2.imread(image_path)
_label = cv2.imread(label_path, cv2.IMREAD_GRAYSCALE)
if not self.keep_size:
_image_rs = cv2.resize(_image, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
_label_rs = cv2.resize(_label, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
self.images_loaded.append(
Image.fromarray(cv2.cvtColor(_image_rs, cv2.COLOR_BGR2RGB)).convert('RGB')
)
self.labels_loaded.append(
Image.fromarray(_label_rs).convert('L')
)
self.class_labels_loaded.append(
self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
)
def __getitem__(self, index):
if self.load_all:
image = self.images_loaded[index]
class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1
else:
image = Image.open(self.image_paths[index]).convert('RGB')
# loading image and label
if self.is_train:
image, label = preproc(image, image, preproc_methods=config.preproc_methods)
# else:
# if _label.shape[0] > 2048 or _label.shape[1] > 2048:
# _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR)
# _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR)
image, label = self.transform_image(image), self.transform_label(label)
if self.is_train:
return image, label, class_label
else:
return image, label, self.label_paths[index]
def __len__(self):
return len(self.image_paths)
class YouData(data.Dataset):
def __init__(self, data_root, image_size, is_train=True):
self.size_train = image_size
self.size_test = image_size
self.keep_size = not config.size
self.data_size = (config.size, config.size)
self.is_train = is_train
self.load_all = config.load_all
self.device = config.device
self.dataset = data_root.replace('\\', '/').split('/')[-1]
if self.is_train and config.auxiliary_classification:
self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
self.transform_image = transforms.Compose([
transforms.Resize(self.data_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
][self.load_all or self.keep_size:])
## 'im' and 'gt' need modifying
self.image_paths = glob(data_root + "/*")
self.img_sizes = []
if self.load_all:
self.images_loaded, self.labels_loaded = [], []
for image_path in tqdm(self.image_paths, total=len(self.image_paths)):
_image = cv2.imread(image_path)
if not self.keep_size:
_image_rs = cv2.resize(_image, (config.size, config.size), interpolation=cv2.INTER_LINEAR)
self.images_loaded.append(
Image.fromarray(cv2.cvtColor(_image_rs, cv2.COLOR_BGR2RGB)).convert('RGB')
)
self.img_sizes.append(_image.shape[:2])
def __getitem__(self, index):
if self.load_all:
image = self.images_loaded[index]
else:
image = Image.open(self.image_paths[index]).convert('RGB')
# loading image and label
if self.is_train:
image, _ = preproc(image, image, preproc_methods=config.preproc_methods)
image = self.transform_image(image)
size = self.img_sizes[index]
return image, size
def __len__(self):
return len(self.image_paths)