-
Notifications
You must be signed in to change notification settings - Fork 34
/
elf_loader.c
1020 lines (884 loc) · 32 KB
/
elf_loader.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "elf_loader.h"
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <limits.h>
#include <dlfcn.h>
#include <unistd.h>
#include <sys/user.h>
#include <sys/mman.h>
#include <sys/auxv.h>
#define powerof2(x) ((((x)-1)&(x))==0)
#define PAGE_START(x) ((x) & PAGE_MASK)
#define PAGE_OFFSET(x) ((x) & ~PAGE_MASK)
#define PAGE_END(x) PAGE_START((x) + (PAGE_SIZE-1))
static LIST_HEAD(mod_list);
static struct elf_module *elf_module_alloc(const char *name)
{
struct elf_module *m;
if (strlen(name) >= ELF_MODULE_NAME_LEN) {
LOG_ERR("ELF name to long");
return NULL;
}
m = malloc(sizeof(*m));
if (m == NULL) {
LOG_ERR("\"%s\" elf module memory alloc failed: %s", name, strerror(errno));
return NULL;
}
memset(m, 0, sizeof(*m));
strncpy(m->name, name, sizeof(m->name) - 1);
INIT_LIST_HEAD(&m->list);
m->refcnt = 1;
LOG_DEBUG("name %s: allocated struct elf_module @ %p", name, m);
return m;
}
static void elf_module_free(struct elf_module *m)
{
if (!m)
return;
LOG_DEBUG("name %s: freeing soinfo @ %p", m->name, m);
if (m->base)
munmap((void *)m->base, m->size);
free(m);
}
static struct elf_module *find_module(const char *name)
{
struct list_head *pos;
struct elf_module *m = NULL, *tmp;
list_for_each(pos, &mod_list) {
tmp = list_entry(pos, struct elf_module, list);
if (!strcmp(name, tmp->name)) {
m = tmp;
break;
}
}
if (m != NULL) {
if (m->flags & FLAG_LINKED)
return m;
LOG_ERR("OOPS: recursive link to \"%s\"", m->name);
return NULL;
}
LOG_DEBUG("[ \"%s\" has not been loaded yet ]", name);
return NULL;
}
//
// elf info
//
struct elf_info {
const char *name;
const ElfW(Ehdr) *hdr;
size_t len;
ElfW(Phdr) *phdr_table;
};
#if defined(__x86_64__)
#define elf_check_arch(x) ((x)->e_machine == EM_X86_64)
#elif defined(__i386__)
#define elf_check_arch(x) ((x)->e_machine == EM_386)
#endif
static bool verify_elf_header(struct elf_info *info)
{
int elf_class;
if (info->len < sizeof(*(info->hdr))) {
LOG_ERR("\"%s\" is too small to be an ELF executable. Expected at least %zu bytes, "
"only found %zu bytes", info->name, sizeof(*(info->hdr)), info->len);
return false;
}
if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG)) {
LOG_ERR("\"%s\" has bad ELF magic", info->name);
return false;
}
// Try to give a clear diagnostic for ELF class mismatches, since they're
// an easy mistake to make during the 32-bit/64-bit transition period.
elf_class = info->hdr->e_ident[EI_CLASS];
#if defined(__LP64__)
if (elf_class != ELFCLASS64) {
if (elf_class == ELFCLASS32) {
LOG_ERR("\"%s\" is 32-bit instead of 64-bit", info->name);
} else {
LOG_ERR("\"%s\" has unknown ELF class: %d", info->name, elf_class);
}
return false;
}
#else
if (elf_class != ELFCLASS32) {
if (elf_class == ELFCLASS64) {
LOG_ERR("\"%s\" is 64-bit instead of 32-bit", info->name);
} else {
LOG_ERR("\"%s\" has unknown ELF class: %d", info->name, elf_class);
}
return false;
}
#endif
if (info->hdr->e_ident[EI_DATA] != ELFDATA2LSB) {
LOG_ERR("\"%s\" not little-endian: %d", info->name, info->hdr->e_ident[EI_DATA]);
return false;
}
if (info->hdr->e_type != ET_EXEC && info->hdr->e_type != ET_DYN) {
LOG_ERR("\"%s\" has unexpected e_type: %d", info->name, info->hdr->e_type);
return false;
}
if (info->hdr->e_version != EV_CURRENT) {
LOG_ERR("\"%s\" has unexpected e_version: %d", info->name, info->hdr->e_version);
return false;
}
if (!elf_check_arch(info->hdr)) {
LOG_ERR("\"%s\" has unexpected e_machine: %d", info->name, info->hdr->e_machine);
return false;
}
LOG_DEBUG("\"%s\" verify elf header done.", info->name);
return true;
}
static bool read_program_headers(struct elf_info *info)
{
if (info->hdr->e_phoff == 0) {
LOG_ERR("\"%s\" has no program header table", info->name);
return false;
}
if (info->hdr->e_phnum < 1 || info->hdr->e_phnum > (65536U / sizeof(ElfW(Phdr)))) {
LOG_ERR("\"%s\" has invalid e_phnum: %d", info->name, info->hdr->e_phnum);
return false;
}
if (info->hdr->e_phentsize != sizeof(ElfW(Phdr))) {
LOG_ERR("\"%s\" has invalid e_phentsize", info->name);
return false;
}
if (info->hdr->e_phoff >= info->len
|| (info->hdr->e_phnum * sizeof(ElfW(Phdr)) > info->len - info->hdr->e_phoff)) {
LOG_ERR("\"%s\" has invalid offset/size of program header table", info->name);
return false;
}
info->phdr_table = (ElfW(Phdr) *)((char *)info->hdr + info->hdr->e_phoff);
LOG_DEBUG("\"%s\" read program header done.", info->name);
return true;
}
//
// symbol
//
static bool is_symbol_global_and_defined(const struct elf_module *m, const ElfW(Sym) *s)
{
if (ELFW(ST_BIND)(s->st_info) == STB_GLOBAL || ELFW(ST_BIND)(s->st_info) == STB_WEAK)
return s->st_shndx != SHN_UNDEF;
return false;
}
static uint32_t elfhash(const char *name)
{
const uint8_t *name_bytes = (const uint8_t *)name;
uint32_t h = 0, g;
while (*name_bytes) {
h = (h << 4) + *name_bytes++;
g = h & 0xf0000000;
h ^= g;
h ^= g >> 24;
}
return h;
}
static ElfW(Sym) *elfhash_lookup(struct elf_module *m, const char *name)
{
uint32_t n;
uint32_t hash = elfhash(name);
ElfW(Sym) *symtab = m->symtab;
const char *strtab = m->strtab;
LOG_DEBUG("SEARCH %s in %s@0x%zx %08x %zu", name, m->name, m->base, hash, hash % m->nbucket);
for (n = m->bucket[hash % m->nbucket]; n != 0; n = m->chain[n]) {
ElfW(Sym) *s = symtab + n;
if (strcmp(strtab + s->st_name, name))
continue;
if (is_symbol_global_and_defined(m, s)) {
LOG_DEBUG("FOUND %s in %s (%zx) %zu", name, m->name, s->st_value, s->st_size);
return s;
}
}
return NULL;
}
// https://blogs.oracle.com/ali/entry/gnu_hash_elf_sections
static uint32_t gnuhash(const char *name)
{
const uint8_t *name_bytes = (const uint8_t *)name;
uint32_t h = 5381;
while (*name_bytes != 0)
h += (h << 5) + *name_bytes++; // h*33 + c = h + h * 32 + c = h + h << 5 + c
return h;
}
static ElfW(Sym) *gnuhash_lookup(struct elf_module *m, const char *name)
{
uint32_t n;
uint32_t hash = gnuhash(name);
uint32_t h2 = hash >> m->gnu_shift2;
uint32_t bloom_mask_bits = sizeof(ElfW(Addr)) * 8;
uint32_t word_num = (hash / bloom_mask_bits) & m->gnu_maskwords;
ElfW(Addr) bloom_word = m->gnu_bloom_filter[word_num];
ElfW(Sym) *symtab = m->symtab;
const char *strtab = m->strtab;
LOG_DEBUG("SEARCH %s in %s@%p (gnu)", name, m->name, (void *)m->base);
// test against bloom filter
if ((1 & (bloom_word >> (hash % bloom_mask_bits)) & (bloom_word >> (h2 % bloom_mask_bits))) == 0) {
LOG_DEBUG("NOT FOUND %s in %s@%p (gnu)", name, m->name, (void *)m->base);
return NULL;
}
// bloom test says "probably yes"...
n = m->gnu_bucket[hash % m->gnu_nbucket];
if (n == 0) {
LOG_DEBUG("NOT FOUND %s in %s@%p (gun)", name, m->name, (void *)m->base);
return NULL;
}
do {
ElfW(Sym) *s = symtab + n;
if (((m->gnu_chain[n] ^ hash) >> 1) != 0)
continue;
if (strcmp(strtab + s->st_name, name))
continue;
if (is_symbol_global_and_defined(m, s)) {
LOG_DEBUG("FOUND %s in %s (%p) %zd", name, m->name, (void *)s->st_value, (size_t)s->st_size);
return s;
}
} while ((m->gnu_chain[n++] & 1) == 0);
return NULL;
}
ElfW(Sym) *lookup_symbol_in_module(struct elf_module *m, const char *name)
{
return (m->flags & FLAG_GNU_HASH) ? gnuhash_lookup(m, name) : elfhash_lookup(m, name);
}
ElfW(Sym) *lookup_symbol_in_needed(struct elf_module *m, const char *name,
struct elf_module **m_from, struct elf_module *needed[])
{
int i;
ElfW(Sym) *s = NULL;
// 1. look for local first
s = lookup_symbol_in_module(m, name);
if (s) {
*m_from = m;
goto done;
}
// 2. TODO: look for it in the preloads
// 3. look for needed module
for (i = 0; needed[i] != NULL; i++) {
LOG_DEBUG("%s: looking up %s in %s", m->name, name, needed[i]->name);
s = lookup_symbol_in_module(needed[i], name);
if (s != NULL) {
*m_from = needed[i];
goto done;
}
}
done:
if (s != NULL) {
LOG_DEBUG("elf module %s sym %s s->st_value = 0x%zx, "
"found in %s, base = 0x%zx, load_bias = 0x%zx",
m->name, name, s->st_value,
(*m_from)->name, (*m_from)->base, (*m_from)->load_bias);
return s;
}
return NULL;
}
//
// relocate
//
#if defined(__x86_64__)
static bool apply_relocate_add(struct elf_module *m, Elf64_Rela *rela, size_t count, struct elf_module *needed[])
{
Elf64_Sym *symtab = m->symtab;
const char *strtab = m->strtab;
size_t i;
struct elf_module *m_from;
for (i = 0; i < count; ++i, ++rela) {
uint32_t type = ELF64_R_TYPE(rela->r_info);
uint32_t sym = ELF64_R_SYM(rela->r_info);
Elf64_Addr reloc = (Elf64_Addr)(rela->r_offset + m->load_bias);
Elf64_Addr sym_addr = 0;
char *sym_name = NULL;
Elf64_Addr addend = rela->r_addend;
LOG_DEBUG("Processing '%s' relocation at index %zu", m->name, i);
if (type == 0) /* R_*_NONE */
continue;
if (sym != 0) {
Elf64_Sym *s;
sym_name = (char *)(strtab + symtab[sym].st_name);
s = lookup_symbol_in_needed(m, sym_name, &m_from, needed);
if (s == NULL) {
sym_addr = (Elf64_Addr)dlsym((void *)0 /*RTLD_DEFAULT*/, sym_name);
if (sym_addr) {
LOG_DEBUG("dlsym(%s) = 0x%zx", sym_name, sym_addr);
} else {
/* We only allow an undefined symbol if this is a weak reference.. */
s = &symtab[sym];
if (ELF64_ST_BIND(s->st_info) != STB_WEAK) {
LOG_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, m->name);
return false;
}
switch (type) {
case R_X86_64_JUMP_SLOT:
case R_X86_64_GLOB_DAT:
case R_X86_64_RELATIVE:
case R_X86_64_IRELATIVE:
case R_X86_64_32:
case R_X86_64_64:
break;
case R_X86_64_PC32:
sym_addr = reloc;
break;
default:
LOG_ERR("unknown weak reloc type %d @ %p (%zu)", type, rela, i);
return false;
}
}
} else { /* s != NULL*/
sym_addr = (Elf64_Addr)(s->st_value + m_from->load_bias);
}
}
switch (type) {
case R_X86_64_NONE:
break;
case R_X86_64_RELATIVE:
LOG_DEBUG("RELO RELATIVE %16p <- %16p",
(void *)reloc, (void *)(m->load_bias + addend));
*(uint64_t *)reloc = (m->load_bias + addend);
break;
case R_X86_64_JUMP_SLOT:
LOG_DEBUG("RELO JMP_SLOT %16p <- %16p %s",
(void *)reloc, (void *)(sym_addr), sym_name);
*(uint64_t *)reloc = sym_addr;
break;
case R_X86_64_GLOB_DAT:
LOG_DEBUG("RELO GLOB_DAT %16p <- %16p %s",
(void *)reloc, (void *)(sym_addr), sym_name);
*(uint64_t *)reloc = sym_addr;
break;
case R_X86_64_COPY:
LOG_DEBUG("RELO R_X86_64_COPY %16p <- %16p %s",
(void *)reloc, (void *)(sym_addr), sym_name);
*(uint64_t *)reloc = sym_addr;
break;
case R_X86_64_64:
LOG_DEBUG("RELO R_X86_64_64 %08zx <- +%08zx %s",
(size_t)reloc, (size_t)(sym_addr + addend), sym_name);
*(uint64_t *)reloc = sym_addr + addend;
break;
case R_X86_64_32:
LOG_DEBUG("RELO R_X86_64_32 %08zx <- +%08zx %s",
(size_t)reloc, (size_t)(sym_addr + addend), sym_name);
*(uint32_t *)reloc = sym_addr + addend;
break;
case R_X86_64_32S:
LOG_DEBUG("RELO R_X86_64_32S %08zx <- +%08zx %s",
(size_t)reloc, (size_t)(sym_addr + addend), sym_name);
*(int32_t *)reloc = sym_addr + addend;
break;
case R_X86_64_PC32:
LOG_DEBUG("RELO R_X86_64_PC32 %08zx <- +%08zx (%08zx - %08zx) %s",
(size_t)reloc, (size_t)(sym_addr - reloc),
(size_t)sym_addr, (size_t)reloc, sym_name);
*(uint32_t *)reloc = sym_addr + addend - reloc;
break;
default:
LOG_ERR("unknown reloc type %d @ %p (%zu)", type, rela, i);
return false;
}
}
return true;
}
#else /* __x86_32 */
static bool apply_relocate(struct elf_module *m, Elf32_Rel *rel, size_t count, struct elf_module *needed[])
{
Elf32_Sym *symtab = m->symtab;
const char *strtab = m->strtab;
size_t i;
struct elf_module *m_from;
for (i = 0; i < count; ++i, ++rel) {
unsigned type = ELF32_R_TYPE(rel->r_info);
unsigned sym = ELF32_R_SYM(rel->r_info);
Elf32_Addr reloc = (Elf32_Addr)(rel->r_offset + m->load_bias);
Elf32_Addr sym_addr = 0;
char *sym_name = NULL;
LOG_DEBUG("Processing '%s' relocation at index %d", m->name, i);
if (type == 0) /* R_*_NONE */
continue;
if (sym != 0) {
Elf32_Sym *s;
sym_name = (char *)(strtab + symtab[sym].st_name);
s = lookup_symbol_in_needed(m, sym_name, &m_from, needed);
if (s == NULL) {
sym_addr = (Elf32_Addr)dlsym((void *)0 /*RTLD_DEFAULT*/, sym_name);
if (sym_addr) {
LOG_DEBUG("dlsym(%s) = 0x%x", sym_name, sym_addr);
} else {
/* We only allow an undefined symbol if this is a weak reference.. */
s = &symtab[sym];
if (ELF32_ST_BIND(s->st_info) != STB_WEAK) {
LOG_ERR("cannot locate symbol \"%s\" referenced by \"%s\"...", sym_name, m->name);
return false;
}
switch (type) {
case R_386_JMP_SLOT:
case R_386_GLOB_DAT:
case R_386_RELATIVE:
case R_386_IRELATIVE:
case R_386_32:
break;
case R_386_PC32:
sym_addr = reloc;
break;
default:
LOG_ERR("unknown weak reloc type %d @ %p (%zu)", type, rel, i);
return false;
}
}
} else { /* s != NULL*/
sym_addr = (Elf32_Addr)(s->st_value + m_from->load_bias);
}
}
switch (type) {
case R_386_JMP_SLOT:
LOG_DEBUG("RELO JMP_SLOT %p <- %p %s\n",
(void *)reloc, (void *)(sym_addr), sym_name);
*(uint32_t *)reloc = sym_addr;
break;
case R_386_GLOB_DAT:
LOG_DEBUG("RELO GLOB_DAT %p <- %p %s\n",
(void *)reloc, (void *)(sym_addr), sym_name);
*(uint32_t *)reloc = sym_addr;
break;
case R_386_RELATIVE:
LOG_DEBUG("RELO RELATIVE %p <- %p\n",
(void *)reloc, (void *)(m->load_bias));
*(uint32_t *)reloc = m->load_bias + *(uint32_t *)reloc;
break;
case R_386_32:
LOG_DEBUG("RELO R_386_32 %08x <- +%08x %s", reloc, sym_addr, sym_name);
*(uint32_t *)reloc += sym_addr;
break;
case R_386_PC32:
LOG_DEBUG("RELO R_386_PC32 %08x <- +%08x (%08x - %08x) %s",
reloc, (sym_addr - reloc), sym_addr, reloc, sym_name);
*(uint32_t *)reloc += (sym_addr - reloc);
break;
default:
LOG_ERR("unknown reloc type %d @ %p (%u)", type, rel, i);
return false;
}
}
return true;
}
#endif /* defined(__x86_64__) */
/* Returns the size of the extent of all the possibly non-contiguous
* loadable segments in an ELF program header table. This corresponds
* to the page-aligned size in bytes that needs to be reserved in the
* process' address space. If there are no loadable segments, 0 is
* returned.
*
* If out_min_vaddr or out_max_vaddr are not null, they will be
* set to the minimum and maximum addresses of pages to be reserved,
* or 0 if there is nothing to load.
*/
static size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
ElfW(Addr)* out_min_vaddr, ElfW(Addr)* out_max_vaddr)
{
ElfW(Addr) min_vaddr = UINTPTR_MAX;
ElfW(Addr) max_vaddr = 0;
bool found_pt_load = false;
size_t i;
for (i = 0; i < phdr_count; ++i) {
const ElfW(Phdr)* phdr = &phdr_table[i];
if (phdr->p_type != PT_LOAD)
continue;
found_pt_load = true;
if (phdr->p_vaddr < min_vaddr)
min_vaddr = phdr->p_vaddr;
if (phdr->p_vaddr + phdr->p_memsz > max_vaddr)
max_vaddr = phdr->p_vaddr + phdr->p_memsz;
}
if (!found_pt_load)
min_vaddr = 0;
min_vaddr = PAGE_START(min_vaddr);
max_vaddr = PAGE_END(max_vaddr);
if (out_min_vaddr != NULL)
*out_min_vaddr = min_vaddr;
if (out_max_vaddr != NULL)
*out_max_vaddr = max_vaddr;
return max_vaddr - min_vaddr;
}
/* Return the address and size of the ELF file's .dynamic section in memory,
* or null if missing.
*
* Input:
* phdr_table -> program header table
* phdr_count -> number of entries in tables
* load_bias -> load bias
* Output:
* dynamic -> address of table in memory (null on failure).
* dynamic_flags -> protection flags for section (unset on failure)
* Return:
* void
*/
static void phdr_table_get_dynamic_section(const ElfW(Phdr) *phdr_table, size_t phdr_count,
ElfW(Addr) load_bias, ElfW(Dyn) **dynamic,
ElfW(Word) *dynamic_flags)
{
size_t i;
*dynamic = NULL;
for (i = 0; i < phdr_count; ++i) {
const ElfW(Phdr) *phdr = &phdr_table[i];
if (phdr->p_type == PT_DYNAMIC) {
*dynamic = (ElfW(Dyn) *)(load_bias + phdr->p_vaddr);
if (dynamic_flags)
*dynamic_flags = phdr->p_flags;
return;
}
}
}
static ElfW(Phdr) *find_loaded_phdr(struct elf_module *m, struct elf_info *info)
{
size_t i;
ElfW(Addr) loaded_phdr = 0;
const ElfW(Phdr) *pphdr;
// If there is a PT_PHDR, use it directly.
for (i = 0, pphdr = info->phdr_table; i < info->hdr->e_phnum; ++i, ++pphdr) {
if (pphdr->p_type == PT_PHDR) {
loaded_phdr = (ElfW(Addr))(m->load_bias + pphdr->p_vaddr);
break;
}
}
// Otherwise, check the first loadable segment. If its file offset
// is 0, it starts with the ELF header, and we can trivially find the
// loaded program header from it.
if (loaded_phdr == 0) {
for (i = 0, pphdr = info->phdr_table; i < info->hdr->e_phnum; ++i, ++pphdr) {
if (pphdr->p_type == PT_LOAD) {
if (pphdr->p_offset == 0) {
const ElfW(Ehdr) *ehdr = (const ElfW(Ehdr) *)(m->load_bias + pphdr->p_vaddr);
loaded_phdr = (ElfW(Addr))((char *)ehdr + ehdr->e_phoff);
break;
}
break;
}
}
}
if (loaded_phdr == 0) {
LOG_ERR("can't find loaded phdr for \"%s\"", m->name);
return false;
}
// Ensures that our program header is actually within a loadable
// segment. This should help catch badly-formed ELF files that
// would cause the linker to crash later when trying to access it.
for (i = 0, pphdr = info->phdr_table; i < info->hdr->e_phnum; ++i, ++pphdr) {
ElfW(Addr) seg_start, seg_end;
if (pphdr->p_type != PT_LOAD)
continue;
seg_start = m->load_bias + pphdr->p_vaddr;
seg_end = seg_start + pphdr->p_filesz;
if (seg_start <= loaded_phdr
&& (loaded_phdr + info->hdr->e_phnum * sizeof(ElfW(Phdr)) <= seg_end)) {
LOG_DEBUG("find loaded phdr for \"%s\" done", m->name);
return (ElfW(Phdr) *)loaded_phdr;
}
}
LOG_ERR("\"%s\" loaded phdr 0x%zx not in loadable segment", m->name, loaded_phdr);
return NULL;
}
static bool layout_segments(struct elf_module *m, struct elf_info *info)
{
ElfW(Addr) min_vaddr;
void *mm_start;
size_t i;
m->size = phdr_table_get_load_size(info->phdr_table, info->hdr->e_phnum, &min_vaddr, NULL);
if (m->size == 0) {
LOG_ERR("\"%s\" has no loadable segments", m->name);
return false;
}
mm_start = mmap(NULL,
m->size,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANONYMOUS,
-1,
0); // munmap in elf_module_free()
if (mm_start == MAP_FAILED) {
LOG_ERR("couldn't map \"%s\" address space, %s", m->name, strerror(errno));
return false;
}
memset(mm_start, 0, m->size);
m->base = (ElfW(Addr))mm_start;
m->load_bias = (char *)mm_start - (char *)min_vaddr;
for (i = 0; i < info->hdr->e_phnum; ++i) {
const ElfW(Phdr) *phdr = &info->phdr_table[i];
if (phdr->p_type != PT_LOAD)
continue;
if (phdr->p_offset + phdr->p_filesz > info->len) {
LOG_ERR("\"%s\" has invalid segment[%zu]:"
"p_offset (%zx) + p_filesz (%zx) past end of %zx)",
m->name, i, phdr->p_offset, phdr->p_filesz, info->len);
return false;
}
memcpy((char *)m->load_bias + phdr->p_vaddr,
(char *)info->hdr + phdr->p_offset, phdr->p_filesz);
}
return true;
}
static bool load_dynamic(struct elf_module *m)
{
ElfW(Dyn) *d;
m->needed_count = 0;
for (d = m->dynamic; d->d_tag != DT_NULL; ++d) {
LOG_DEBUG("d = %p, d[0](tag) = 0x%p d[1](val) = 0x%p",
d, (void *)d->d_tag, (void *)d->d_un.d_val);
switch (d->d_tag) {
case DT_HASH:
m->nbucket = ((uint32_t *)(m->load_bias + d->d_un.d_ptr))[0];
m->nchain = ((uint32_t *)(m->load_bias + d->d_un.d_ptr))[1];
m->bucket = (uint32_t *)(m->load_bias + d->d_un.d_ptr + 8);
m->chain = (uint32_t *)(m->load_bias + d->d_un.d_ptr + 8 + m->nbucket *4);
break;
case DT_GNU_HASH:
m->gnu_nbucket = ((uint32_t *)(m->load_bias + d->d_un.d_ptr))[0];
// skip symndx
m->gnu_maskwords = ((uint32_t *)(m->load_bias + d->d_un.d_ptr))[2];
m->gnu_shift2 = ((uint32_t *)(m->load_bias + d->d_un.d_ptr))[3];
m->gnu_bloom_filter = (ElfW(Addr) *)(m->load_bias + d->d_un.d_ptr + 16);
m->gnu_bucket = (uint32_t *)(m->gnu_bloom_filter + m->gnu_maskwords);
// amend chain for symndx = header[1]
m->gnu_chain = m->gnu_bucket + m->gnu_nbucket -
((uint32_t *)(m->load_bias + d->d_un.d_ptr))[1];
if (!powerof2(m->gnu_maskwords)) {
LOG_ERR("invalid maskwords for gnu_hash = 0x%x, in \"%s\" expecting power to two",
m->gnu_maskwords, m->name);
return false;
}
m->gnu_maskwords--;
m->flags |= FLAG_GNU_HASH;
break;
case DT_STRTAB:
m->strtab = (char *)(m->load_bias + d->d_un.d_ptr);
break;
case DT_STRSZ:
m->strtab_size = d->d_un.d_val;
break;
case DT_SYMTAB:
m->symtab = (ElfW(Sym) *)(m->load_bias + d->d_un.d_ptr);
break;
case DT_SYMENT:
if (d->d_un.d_val != sizeof(ElfW(Sym))) {
LOG_ERR("invalid DT_SYMENT: %zu in \"%s\"", (size_t)d->d_un.d_val, m->name);
return false;
}
break;
#if defined(__x86_64__)
case DT_PLTREL:
if (d->d_un.d_val != DT_RELA) {
LOG_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_RELA", m->name);
return false;
}
break;
case DT_JMPREL:
m->plt_rela = (ElfW(Rela) *)(m->load_bias + d->d_un.d_ptr);
break;
case DT_PLTRELSZ:
m->plt_rela_count = d->d_un.d_val / sizeof(ElfW(Rela));
break;
case DT_RELA:
m->rela = (ElfW(Rela) *)(m->load_bias + d->d_un.d_ptr);
break;
case DT_RELASZ:
m->rela_count = d->d_un.d_val /sizeof(ElfW(Rela));
break;
case DT_RELAENT:
if (d->d_un.d_val != sizeof(ElfW(Rela))) {
LOG_ERR("invalid DT_RELAENT: %zu", (size_t)d->d_un.d_val);
return false;
}
break;
case DT_REL:
LOG_ERR("unsupported DT_REL in \"%s\"", m->name);
return false;
case DT_RELSZ:
LOG_ERR("unsupported DT_RELSZ in \"%s\"", m->name);
return false;
#else
case DT_PLTREL:
if (d->d_un.d_val != DT_REL) {
LOG_ERR("unsupported DT_PLTREL in \"%s\"; expected DT_REL", m->name);
return false;
}
break;
case DT_JMPREL:
m->plt_rel = (ElfW(Rel) *)(m->load_bias + d->d_un.d_ptr);
break;
case DT_PLTRELSZ:
m->plt_rel_count = d->d_un.d_val / sizeof(ElfW(Rel));
break;
case DT_REL:
m->rel = (ElfW(Rel) *)(m->load_bias + d->d_un.d_ptr);
break;
case DT_RELSZ:
m->rel_count = d->d_un.d_val / sizeof(ElfW(Rel));
break;
case DT_RELENT:
if (d->d_un.d_val != sizeof(ElfW(Rel))) {
LOG_ERR("invalid DT_RELENT: %zu", (size_t)d->d_un.d_val);
return false;
}
break;
case DT_RELA:
LOG_ERR("unsupported DT_RELA in \"%s\"", m->name);
return false;
case DT_RELASZ:
LOG_ERR("unsupported DT_RELASZ in \"%s\"", m->name);
return false;
#endif
case DT_NEEDED:
m->needed_count++;
break;
default:
LOG_DEBUG("\"%s\" unused DT entry: type %p arg %p",
m->name, (void *)d->d_tag, (void *)d->d_un.d_val);
break;
};
}
LOG_DEBUG("mod->base = %zx, mod->strtab = %p, mod->symtab = %p",
m->base, m->strtab, m->symtab);
// Sanity checks.
if (m->nbucket == 0 && m->gnu_nbucket == 0) {
LOG_ERR("empty/missing DT_HASH/DT_GNU_HASH in \"%s\" "
"(new hash type from the future?)", m->name);
return false;
}
if (m->strtab == 0) {
LOG_ERR("empty/missing DT_STRTAB in \"%s\"", m->name);
return false;
}
if (m->symtab == 0) {
LOG_ERR("empty/missing DT_SYMTAB in \"%s\"", m->name);
return false;
}
return true;
}
static bool elf_link(struct elf_module *m)
{
bool ret = false;
ElfW(Dyn) *d;
struct elf_module **needed;
struct elf_module **pneeded;
LOG_DEBUG("[ linking %s ]", m->name);
LOG_DEBUG("mod->base = %zx mod->flags = 0x%08x", m->base, m->flags);
/* load needed module */
pneeded = needed = (struct elf_module **)malloc((1 + m->needed_count) * sizeof(struct elf_module *));
if (needed == NULL) {
LOG_ERR("\"%s\"malloc for needed array failed", m->name);
return false;
}
for (d = m->dynamic; d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_NEEDED) {
struct elf_module *need_mod;
const char *need_name = m->strtab + d->d_un.d_val;
LOG_DEBUG("%s needs %s", m->name, need_name);
need_mod = find_module(need_name);
if (need_mod != NULL) {
need_mod->refcnt++;
*pneeded++ = need_mod;
continue;
}
LOG_DEBUG("load module %s use dlopen()", m->name);
if (dlopen(need_name, RTLD_NOW | RTLD_GLOBAL) == NULL) {
LOG_ERR("could not load module \"%s\" needed by \"%s\"", need_name, m->name);
return false;
}
}
}
*pneeded = NULL;
#if defined(__x86_64__)
if (m->rela != NULL) {
LOG_DEBUG("[ relocating %s ]", m->name);
if (!apply_relocate_add(m, m->rela, m->rela_count, needed))
goto out;
}
if (m->plt_rela != NULL) {
LOG_DEBUG("[ relocating %s plt ]", m->name);
if (!apply_relocate_add(m, m->plt_rela, m->plt_rela_count, needed))
goto out;
}
#else
if (m->rel != NULL) {
LOG_DEBUG("[ relocating %s ]", m->name);
if (!apply_relocate(m, m->rel, m->rel_count, needed))
goto out;
}
if (m->plt_rel != NULL) {
LOG_DEBUG("[ relocating %s plt ]", m->name );
if (!apply_relocate(m, m->plt_rel, m->plt_rel_count, needed))
goto out;
}
#endif
m->flags |= FLAG_LINKED;
ret = true;
out:
free(needed);
LOG_DEBUG("[ finished linking %s, ret=%d ]", m->name, ret);
return ret;
}
struct elf_module *load_elf_module(const char *name, const void *elf_data, size_t elf_len)
{
struct elf_info info = { .name = name, .hdr = elf_data, .len = elf_len };
struct elf_module *m;
LOG_DEBUG("load_elf_module: name=%s, bin=%p, len=%zu", name, elf_data, elf_len);
if (find_module(name)) {
LOG_ERR("\"%s\" already exist", name);
return NULL;
}
if (!verify_elf_header(&info) || !read_program_headers(&info))
return NULL;
m = elf_module_alloc(name);
if (m == NULL)
return NULL;
if (!layout_segments(m, &info))
goto out_free;
m->phdr = find_loaded_phdr(m, &info);
if (m->phdr == NULL)
goto out_free;
m->phnum = info.hdr->e_phnum;
m->entry = m->load_bias + info.hdr->e_entry;
phdr_table_get_dynamic_section(m->phdr, m->phnum, m->load_bias, &m->dynamic, NULL);
if (m->dynamic) {
if (!load_dynamic(m))
goto out_free;
if (!elf_link(m))
goto out_free;
}
list_add_tail(&m->list, &mod_list);
LOG_DEBUG("[ \"%s\" load done, base=0x%zx sz=0x%zx entry=0x%zx ]",
m->name, m->base, m->size, m->entry);
return m;
out_free:
elf_module_free(m);
return NULL;
}
void unload_elf_module(const char *name)
{
struct elf_module *m;
ElfW(Dyn) *d;
m = find_module(name);
if (m == NULL)
return;
if (m->refcnt == 1) {
LOG_DEBUG("unloading \"%s\"", m->name);
list_del(&m->list);
for (d = m->dynamic; d->d_tag != DT_NULL; ++d) {
if (d->d_tag == DT_NEEDED) {
const char *need_name = m->strtab + d->d_un.d_val;
LOG_DEBUG("%s needs to unload %s", m->name, need_name);
unload_elf_module(need_name);
}
}
elf_module_free(m);
} else {
m->refcnt--;