-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyproject.toml
137 lines (123 loc) · 3.67 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
[build-system]
requires = ["setuptools >= 42", "versioningit ~= 1.0", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "AnisoNet"
description = "An equivariant graph neural network to predict dielectric tensors."
readme = "README.md"
keywords = ["chemistry", "machine-learning"]
license = { text = "MIT" }
authors = [{ name = "Yuchen Lou, Alex Ganose", email = "yuchen.lou19@imperial.ac.uk" }]
dynamic = ["version"]
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Information Technology",
"Intended Audience :: Science/Research",
"Intended Audience :: System Administrators",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Topic :: Other/Nonlisted Topic",
"Topic :: Scientific/Engineering",
]
requires-python = ">=3.9"
dependencies = ["pymatgen", "torch", "ase", "click", "e3nn", "lightning"]
[project.optional-dependencies]
train = ["lightning"]
docs = [
"furo==2023.8.19",
"ipython==8.14.0",
"jsonschema[format]",
"myst_parser==2.0.0",
"numpydoc==1.5.0",
"sphinx==7.2.4",
"sphinx-copybutton==0.5.2",
"sphinx_design==0.5.0",
]
dev = ["pre-commit>=2.12.1"]
tests = ["pytest-cov==4.1.0", "pytest==7.4.0"]
strict = ["torch==2.0.1", "ase==3.22.1", "click==8.1.7", "lightning==2.0.9"]
[project.urls]
repository = "https://github.com/virtualatoms/AnisoNet"
documentation = "https://virtualatoms.github.io/AnisoNet/"
[tool.versioningit.vcs]
method = "git"
default-tag = "0.0.1"
[tool.flake8]
max-line-length = 88
max-doc-length = 88
select = "C, E, F, W, B"
extend-ignore = "E203, W503, E501, F401, RST21, B019"
min-python-version = "3.8.0"
docstring-convention = "numpy"
rst-roles = "class, func, ref, obj"
[tool.mypy]
ignore_missing_imports = true
no_strict_optional = true
[tool.coverage.run]
include = ["src/*"]
parallel = true
branch = true
[tool.coverage.paths]
source = ["src/"]
[tool.coverage.report]
skip_covered = true
show_missing = true
exclude_lines = [
'^\s*@overload( |$)',
'^\s*assert False(,|$)',
'if typing.TYPE_CHECKING:',
]
[tool.ruff]
target-version = "py38"
select = [
"B", # flake8-bugbear
"C4", # flake8-comprehensions
"D", # pydocstyle
"E", # pycodestyle error
"EXE", # flake8-executable
"F", # pyflakes
"FLY", # flynt
"I", # isort
"ICN", # flake8-import-conventions
"ISC", # flake8-implicit-str-concat
"PD", # pandas-vet
"PERF", # perflint
"PIE", # flake8-pie
"PL", # pylint
"PT", # flake8-pytest-style
"PYI", # flakes8-pyi
"Q", # flake8-quotes
"RET", # flake8-return
"RSE", # flake8-raise
"RUF", # Ruff-specific rules
"SIM", # flake8-simplify
"SLOT", # flake8-slots
"TCH", # flake8-type-checking
"TID", # tidy imports
"TID", # flake8-tidy-imports
"UP", # pyupgrade
"W", # pycodestyle warning
"YTT", # flake8-2020
]
ignore = [
"PD011", # pandas-use-of-dot-values
"PERF203", # try-except-in-loop
"PLR", # pylint-refactor
"PT004", # pytest-missing-fixture-name-underscore
"PT006", # pytest-parametrize-names-wrong-type
"RUF013", # implicit-optional
# TODO remove PT011, pytest.raises() should always check err msg
"PT011", # pytest-raises-too-broad
"PT013", # pytest-incorrect-pytest-import
"B019", # `functools.lru_cache`
]
pydocstyle.convention = "numpy"
isort.known-first-party = ["valml"]
[tool.ruff.per-file-ignores]
"__init__.py" = ["F401"]
"**/tests/*" = ["D"]
[project.scripts]
anisonet-train = "anisonet.cli:train"