-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwrappers.py
473 lines (369 loc) · 12.9 KB
/
wrappers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
import numpy as np
import os
os.environ.setdefault('PATH', '')
from collections import deque
import gym
from gym import spaces
import cv2
cv2.ocl.setUseOpenCL(False)
class ExposeTimeLimit(gym.Wrapper):
def __init__(self, env):
gym.Wrapper.__init__(self, env)
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
class NoopResetEnv(gym.Wrapper):
def __init__(self, env, noop_max):
gym.Wrapper.__init__(self, env)
self.noop_max = noop_max
self.override_num_noops = None
self.noop_action = 0
assert env.unwrapped.get_action_meanings()[0] == 'NOOP'
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
def reset(self, **kwargs):
self.env.reset(**kwargs)
if self.override_num_noops is not None:
noops = self.override_num_noops
else:
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1)
assert noops > 0
obs = None
for _ in range(noops):
obs, _, done, _ = self.env.step(self.noop_action)
if done:
obs = self.env.reset(**kwargs)
return obs
def step(self, act):
obs, reward, done, info = self.env.step(act)
return obs, reward, done, info
class FireResetEnv(gym.Wrapper):
def __init__(self, env):
gym.Wrapper.__init__(self, env)
assert env.unwrapped.get_action_meanings()[1] == 'FIRE'
assert len(env.unwrapped.get_action_meanings()) >= 3
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
@property
def was_real_done(self):
return self.env.was_real_done
@was_real_done.setter
def was_real_done(self, was_real_done):
self.env.was_real_done = was_real_done
def reset(self, **kwargs):
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(1)
if done:
self.env.reset(**kwargs)
obs, _, done, _ = self.env.step(2)
if done:
self.env.reset(**kwargs)
return obs
def step(self, act):
return self.env.step(act)
class EpisodicLifeEnv(gym.Wrapper):
def __init__(self, env):
gym.Wrapper.__init__(self, env)
self.lives = 0
self.was_real_done = True
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
lives = self.env.unwrapped.ale.lives()
if lives < self.lives and lives > 0:
done = True
self.lives = lives
return obs, reward, done, info
def reset(self, **kwargs):
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
obs, _, _, _ = self.env.step(0)
self.lives = self.env.unwrapped.ale.lives()
return obs
class EpisodicLifeEnvPong(gym.Wrapper):
def __init__(self, env):
gym.Wrapper.__init__(self, env)
self.was_real_done = True
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.was_real_done = done
if reward == -1:
done = True
return obs, reward, done, info
def reset(self, **kwargs):
if self.was_real_done:
obs = self.env.reset(**kwargs)
else:
obs, _, _, _ = self.env.step(0)
return obs
class StickyActions(gym.Wrapper):
def __init__(self, env, frame_skip):
gym.Wrapper.__init__(self, env)
self._skip = frame_skip
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
def step(self, action):
total_reward = 0.0
done = None
for i in range(self._skip):
obs, reward, done, info = self.env.step(action)
total_reward += reward
if done:
break
return obs, total_reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class MaxAndSkipEnv(gym.Wrapper):
def __init__(self, env, frame_skip):
gym.Wrapper.__init__(self, env)
self.obs_buffer = np.zeros((2,)+env.observation_space.shape, dtype=np.uint8)
self._skip = frame_skip
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
def step(self, action):
total_reward = 0.0
done = None
for i in range(self._skip):
obs, reward, done, info = self.env.step(action)
if i == self._skip - 2: self.obs_buffer[0] = obs
if i == self._skip - 1: self.obs_buffer[1] = obs
total_reward += reward
if done:
break
max_frame = self.obs_buffer.max(axis=0)
return max_frame, total_reward, done, info
def reset(self, **kwargs):
return self.env.reset(**kwargs)
class ClipRewardEnv(gym.RewardWrapper):
def __init__(self, env):
gym.RewardWrapper.__init__(self, env)
self.last_reward = None
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
@property
def was_real_done(self):
return self.env.was_real_done
@was_real_done.setter
def was_real_done(self, was_real_done):
self.env.was_real_done = was_real_done
def reward(self, reward):
self.last_reward = reward
return np.sign(reward)
class WarpFrame(gym.ObservationWrapper):
def __init__(self, env, frame_size, grayscale=True):
super().__init__(env)
width, height = frame_size
self._width = width
self._height = height
self._grayscale = grayscale
if self._grayscale:
num_colors = 1
else:
num_colors = 3
new_space = gym.spaces.Box(low=0,
high=255,
shape=(self._height, self._width, num_colors),
dtype=np.uint8)
original_space = self.observation_space
self.observation_space = new_space
assert original_space.dtype == np.uint8 and len(original_space.shape) == 3
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
def observation(self, obs):
if self._grayscale:
obs = cv2.cvtColor(obs, cv2.COLOR_RGB2GRAY)
obs = np.expand_dims(obs, -1)
obs = cv2.resize(obs, (self._width, self._height), interpolation=cv2.INTER_AREA)
return obs
class FrameActionStack(gym.Wrapper):
def __init__(self, env, stack_frames):
gym.Wrapper.__init__(self, env)
self.k = 2 * stack_frames
self.frames = deque([], maxlen=self.k)
shp = env.observation_space.shape
self.observation_space = spaces.Box(low=0, high=255, shape=(self.k, *shp[:-1]), dtype=env.observation_space.dtype)
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
def reset(self):
obs = self.env.reset()
for _ in range(self.k):
act_plane = np.full_like(obs, 0)
act_plane[0, :] = 1
self.frames.append(act_plane)
self.frames.append(obs)
return self._get_ob()
def step(self, action):
obs, reward, done, info = self.env.step(action)
act_plane = np.full_like(obs, 255*(action/self.env.action_space.n), dtype=np.uint8)
self.frames.append(act_plane)
self.frames.append(obs)
return self._get_ob(), reward, done, info
def _get_ob(self):
assert len(self.frames) == self.k
return LazyFrames(list(self.frames))
class AtariFrameStack(gym.Wrapper):
def __init__(self, env, stack_frames):
gym.Wrapper.__init__(self, env)
self.k = stack_frames
self.frames = deque([], maxlen=self.k)
shp = env.observation_space.shape
self.observation_space = spaces.Box(low=0, high=255, shape=(self.k, shp[:-1]), dtype=env.observation_space.dtype)
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
def reset(self):
obs = self.env.reset()
for _ in range(self.k):
self.frames.append(obs)
return self._get_ob()
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.frames.append(obs)
return self._get_ob(), reward, done, info
def _get_ob(self):
assert len(self.frames) == self.k
return LazyFrames(list(self.frames))
class StackFrames(gym.Wrapper):
def __init__(self, env, stack_frames):
gym.Wrapper.__init__(self, env)
self.k = stack_frames
self.frames = deque([], maxlen=self.k)
old_shape = env.observation_space.shape
if len(old_shape) > 1:
env.observation_space.shape = (self.k, *old_shape[:-1])
else:
env.observation_space.shape = (self.k, *old_shape)
@property
def _elapsed_steps(self):
return self.env._elapsed_steps
@_elapsed_steps.setter
def _elapsed_steps(self, steps):
self.env._elapsed_steps = steps
@property
def was_real_done(self):
return self.env.was_real_done
@was_real_done.setter
def was_real_done(self, was_real_done):
self.env.was_real_done = was_real_done
def reset(self):
obs = self.env.reset()
for _ in range(self.k):
self.frames.append(obs)
return self._get_ob()
def step(self, action):
obs, reward, done, info = self.env.step(action)
self.frames.append(obs)
return self._get_ob(), reward, done, info
def _get_ob(self):
assert len(self.frames) == self.k
return LazyFrames(list(self.frames))
class LazyFrames(object):
def __init__(self, frames):
self._frames = frames
self._out = None
def _force(self):
if self._out is None:
self._out = np.array(self._frames)
self._frames = None
return self._out
def __array__(self, dtype=None):
out = self._force()
if dtype is not None:
out = out.astype(dtype)
return out
def __len__(self):
return len(self._force())
def __getitem__(self, i):
return self._force()[i]
def count(self):
frames = self._force()
return frames.shape[frames.ndim - 1]
def frame(self, i):
return self._force()[..., i]
def wrap_atari(env, config):
assert 'NoFrameskip' in env.spec.id
env = NoopResetEnv(env, config.noop_max)
env = MaxAndSkipEnv(env, config.frame_skip)
if config.episode_life:
env = EpisodicLifeEnv(env)
if 'FIRE' in env.unwrapped.get_action_meanings():
env = FireResetEnv(env)
env = WarpFrame(env, config.frame_size)
if config.stack_obs:
if config.stack_actions:
env = FrameActionStack(env, config.stack_obs)
else:
env = AtariFrameStack(env, config.stack_obs)
if config.clip_rewards:
env = ClipRewardEnv(env)
return env
def wrap_game(env, config):
if config.wrap_atari:
env = wrap_atari(env, config)
else:
if config.noop_reset:
env = NoopResetEnv(env, config.noop_max)
if config.sticky_actions > 1:
env = StickyActions(env, config.sticky_actions)
if config.episode_life:
if 'Pong' in config.environment:
env = EpisodicLifeEnvPong(env)
else:
env = EpisodicLifeEnv(env)
if config.fire_reset:
env = FireResetEnv(env)
if config.stack_obs > 1:
env = StackFrames(env, config.stack_obs)
if config.clip_rewards:
env = ClipRewardEnv(env)
if not hasattr(env, 'legal_actions'):
legal_actions = range(env.action_space.n)
env.legal_actions = lambda: legal_actions
return env