-
-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathf64_str.c.v
386 lines (344 loc) · 10.3 KB
/
f64_str.c.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
module strconv
/*=============================================================================
f64 to string
Copyright (c) 2019-2024 Dario Deledda. All rights reserved.
Use of this source code is governed by an MIT license
that can be found in the LICENSE file.
This file contains the f64 to string functions
These functions are based on the work of:
Publication:PLDI 2018: Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and ImplementationJune 2018
Pages 270–282 https://doi.org/10.1145/3192366.3192369
inspired by the Go version here:
https://github.com/cespare/ryu/tree/ba56a33f39e3bbbfa409095d0f9ae168a595feea
=============================================================================*/
@[direct_array_access]
fn (d Dec64) get_string_64(neg bool, i_n_digit int, i_pad_digit int) string {
mut n_digit := if i_n_digit < 1 { 1 } else { i_n_digit + 1 }
pad_digit := i_pad_digit + 1
mut out := d.m
mut d_exp := d.e
// mut out_len := decimal_len_64(out)
mut out_len := dec_digits(out)
out_len_original := out_len
mut fw_zeros := 0
if pad_digit > out_len {
fw_zeros = pad_digit - out_len
}
mut buf := []u8{len: (out_len + 6 + 1 + 1 + fw_zeros)} // sign + mant_len + . + e + e_sign + exp_len(2) + \0}
mut i := 0
if neg {
buf[i] = `-`
i++
}
mut disp := 0
if out_len <= 1 {
disp = 1
}
// rounding last used digit
if n_digit < out_len {
// println("out:[$out]")
out += ten_pow_table_64[out_len - n_digit - 1] * 5 // round to up
out /= ten_pow_table_64[out_len - n_digit]
// println("out1:[$out] ${d.m / ten_pow_table_64[out_len - n_digit ]}")
// fix issue #22424
out_div := d.m / ten_pow_table_64[out_len - n_digit]
if out_div < out && dec_digits(out_div) < dec_digits(out) {
// from `99` to `100`, will need d_exp+1
d_exp++
n_digit++
}
// println("cmp: ${d.m/ten_pow_table_64[out_len - n_digit ]} ${out/ten_pow_table_64[out_len - n_digit ]}")
out_len = n_digit
// println("orig: ${out_len_original} new len: ${out_len} out:[$out]")
}
y := i + out_len
mut x := 0
for x < (out_len - disp - 1) {
buf[y - x] = `0` + u8(out % 10)
out /= 10
i++
x++
}
// fix issue #22424
// no decimal digits needed, end here
// if i_n_digit == 0 {
// unsafe {
// buf[i] = 0
// return tos(&u8(&buf[0]), i)
// }
//}
if out_len >= 1 {
buf[y - x] = `.`
x++
i++
}
if y - x >= 0 {
buf[y - x] = `0` + u8(out % 10)
i++
}
for fw_zeros > 0 {
buf[i] = `0`
i++
fw_zeros--
}
buf[i] = `e`
i++
mut exp := d_exp + out_len_original - 1
if exp < 0 {
buf[i] = `-`
i++
exp = -exp
} else {
buf[i] = `+`
i++
}
// Always print at least two digits to match strconv's formatting.
d2 := exp % 10
exp /= 10
d1 := exp % 10
d0 := exp / 10
if d0 > 0 {
buf[i] = `0` + u8(d0)
i++
}
buf[i] = `0` + u8(d1)
i++
buf[i] = `0` + u8(d2)
i++
buf[i] = 0
return unsafe {
tos(&u8(&buf[0]), i)
}
}
fn f64_to_decimal_exact_int(i_mant u64, exp u64) (Dec64, bool) {
mut d := Dec64{}
e := exp - bias64
if e > mantbits64 {
return d, false
}
shift := mantbits64 - e
mant := i_mant | u64(0x0010_0000_0000_0000) // implicit 1
// mant := i_mant | (1 << mantbits64) // implicit 1
d.m = mant >> shift
if (d.m << shift) != mant {
return d, false
}
for (d.m % 10) == 0 {
d.m /= 10
d.e++
}
return d, true
}
fn f64_to_decimal(mant u64, exp u64) Dec64 {
mut e2 := 0
mut m2 := u64(0)
if exp == 0 {
// We subtract 2 so that the bounds computation has
// 2 additional bits.
e2 = 1 - bias64 - int(mantbits64) - 2
m2 = mant
} else {
e2 = int(exp) - bias64 - int(mantbits64) - 2
m2 = (u64(1) << mantbits64) | mant
}
even := (m2 & 1) == 0
accept_bounds := even
// Step 2: Determine the interval of valid decimal representations.
mv := u64(4 * m2)
mm_shift := bool_to_u64(mant != 0 || exp <= 1)
// Step 3: Convert to a decimal power base uing 128-bit arithmetic.
mut vr := u64(0)
mut vp := u64(0)
mut vm := u64(0)
mut e10 := 0
mut vm_is_trailing_zeros := false
mut vr_is_trailing_zeros := false
if e2 >= 0 {
// This expression is slightly faster than max(0, log10Pow2(e2) - 1).
q := log10_pow2(e2) - bool_to_u32(e2 > 3)
e10 = int(q)
k := pow5_inv_num_bits_64 + pow5_bits(int(q)) - 1
i := -e2 + int(q) + k
mul := *(&Uint128(&pow5_inv_split_64_x[q * 2]))
vr = mul_shift_64(u64(4) * m2, mul, i)
vp = mul_shift_64(u64(4) * m2 + u64(2), mul, i)
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, i)
if q <= 21 {
// This should use q <= 22, but I think 21 is also safe.
// Smaller values may still be safe, but it's more
// difficult to reason about them. Only one of mp, mv,
// and mm can be a multiple of 5, if any.
if mv % 5 == 0 {
vr_is_trailing_zeros = multiple_of_power_of_five_64(mv, q)
} else if accept_bounds {
// Same as min(e2 + (^mm & 1), pow5Factor64(mm)) >= q
// <=> e2 + (^mm & 1) >= q && pow5Factor64(mm) >= q
// <=> true && pow5Factor64(mm) >= q, since e2 >= q.
vm_is_trailing_zeros = multiple_of_power_of_five_64(mv - 1 - mm_shift,
q)
} else if multiple_of_power_of_five_64(mv + 2, q) {
vp--
}
}
} else {
// This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
q := log10_pow5(-e2) - bool_to_u32(-e2 > 1)
e10 = int(q) + e2
i := -e2 - int(q)
k := pow5_bits(i) - pow5_num_bits_64
j := int(q) - k
mul := *(&Uint128(&pow5_split_64_x[i * 2]))
vr = mul_shift_64(u64(4) * m2, mul, j)
vp = mul_shift_64(u64(4) * m2 + u64(2), mul, j)
vm = mul_shift_64(u64(4) * m2 - u64(1) - mm_shift, mul, j)
if q <= 1 {
// {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q trailing 0 bits.
// mv = 4 * m2, so it always has at least two trailing 0 bits.
vr_is_trailing_zeros = true
if accept_bounds {
// mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff mmShift == 1.
vm_is_trailing_zeros = (mm_shift == 1)
} else {
// mp = mv + 2, so it always has at least one trailing 0 bit.
vp--
}
} else if q < 63 { // TODO(ulfjack/cespare): Use a tighter bound here.
// We need to compute min(ntz(mv), pow5Factor64(mv) - e2) >= q - 1
// <=> ntz(mv) >= q - 1 && pow5Factor64(mv) - e2 >= q - 1
// <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q)
// <=> (mv & ((1 << (q - 1)) - 1)) == 0
// We also need to make sure that the left shift does not overflow.
vr_is_trailing_zeros = multiple_of_power_of_two_64(mv, q - 1)
}
}
// Step 4: Find the shortest decimal representation
// in the interval of valid representations.
mut removed := 0
mut last_removed_digit := u8(0)
mut out := u64(0)
// On average, we remove ~2 digits.
if vm_is_trailing_zeros || vr_is_trailing_zeros {
// General case, which happens rarely (~0.7%).
for {
vp_div_10 := vp / 10
vm_div_10 := vm / 10
if vp_div_10 <= vm_div_10 {
break
}
vm_mod_10 := vm % 10
vr_div_10 := vr / 10
vr_mod_10 := vr % 10
vm_is_trailing_zeros = vm_is_trailing_zeros && vm_mod_10 == 0
vr_is_trailing_zeros = vr_is_trailing_zeros && last_removed_digit == 0
last_removed_digit = u8(vr_mod_10)
vr = vr_div_10
vp = vp_div_10
vm = vm_div_10
removed++
}
if vm_is_trailing_zeros {
for {
vm_div_10 := vm / 10
vm_mod_10 := vm % 10
if vm_mod_10 != 0 {
break
}
vp_div_10 := vp / 10
vr_div_10 := vr / 10
vr_mod_10 := vr % 10
vr_is_trailing_zeros = vr_is_trailing_zeros && last_removed_digit == 0
last_removed_digit = u8(vr_mod_10)
vr = vr_div_10
vp = vp_div_10
vm = vm_div_10
removed++
}
}
if vr_is_trailing_zeros && last_removed_digit == 5 && (vr % 2) == 0 {
// Round even if the exact number is .....50..0.
last_removed_digit = 4
}
out = vr
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
if (vr == vm && (!accept_bounds || !vm_is_trailing_zeros)) || last_removed_digit >= 5 {
out++
}
} else {
// Specialized for the common case (~99.3%).
// Percentages below are relative to this.
mut round_up := false
for vp / 100 > vm / 100 {
// Optimization: remove two digits at a time (~86.2%).
round_up = (vr % 100) >= 50
vr /= 100
vp /= 100
vm /= 100
removed += 2
}
// Loop iterations below (approximately), without optimization above:
// 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%, 6+: 0.02%
// Loop iterations below (approximately), with optimization above:
// 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
for vp / 10 > vm / 10 {
round_up = (vr % 10) >= 5
vr /= 10
vp /= 10
vm /= 10
removed++
}
// We need to take vr + 1 if vr is outside bounds
// or we need to round up.
out = vr + bool_to_u64(vr == vm || round_up)
}
return Dec64{
m: out
e: e10 + removed
}
}
//=============================================================================
// String Functions
//=============================================================================
// f64_to_str returns `f` as a `string` in scientific notation with max `n_digit` digits after the dot.
pub fn f64_to_str(f f64, n_digit int) string {
mut u1 := Uf64{}
u1.f = f
u := unsafe { u1.u }
neg := (u >> (mantbits64 + expbits64)) != 0
mant := u & ((u64(1) << mantbits64) - u64(1))
exp := (u >> mantbits64) & ((u64(1) << expbits64) - u64(1))
// println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016lx}")
// Exit early for easy cases.
if exp == maxexp64 || (exp == 0 && mant == 0) {
return get_string_special(neg, exp == 0, mant == 0)
}
mut d, ok := f64_to_decimal_exact_int(mant, exp)
if !ok {
// println("to_decimal")
d = f64_to_decimal(mant, exp)
}
// println("${d.m} ${d.e}")
return d.get_string_64(neg, n_digit, 0)
}
// f64_to_str returns `f` as a `string` in scientific notation with max `n_digit` digits after the dot.
pub fn f64_to_str_pad(f f64, n_digit int) string {
mut u1 := Uf64{}
u1.f = f
u := unsafe { u1.u }
neg := (u >> (mantbits64 + expbits64)) != 0
mant := u & ((u64(1) << mantbits64) - u64(1))
exp := (u >> mantbits64) & ((u64(1) << expbits64) - u64(1))
// unsafe { println("s:${neg} mant:${mant} exp:${exp} float:${f} byte:${u1.u:016x}") }
// Exit early for easy cases.
if exp == maxexp64 || (exp == 0 && mant == 0) {
return get_string_special(neg, exp == 0, mant == 0)
}
mut d, ok := f64_to_decimal_exact_int(mant, exp)
if !ok {
// println("to_decimal")
d = f64_to_decimal(mant, exp)
}
// println("DEBUG: ${d.m} ${d.e}")
return d.get_string_64(neg, n_digit, n_digit)
}