Skip to content

Commit d247ff7

Browse files
[CI] Add accuracy ci for DP and EP and TP
Signed-off-by: hfadzxy <starmoon_zhang@163.com>
1 parent e46dc14 commit d247ff7

File tree

3 files changed

+218
-89
lines changed

3 files changed

+218
-89
lines changed

.github/workflows/vllm_ascend_test_long_term.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -103,5 +103,5 @@ jobs:
103103
pytest -sv tests/long_term/spec_decode --ignore=tests/long_term/spec_decode/e2e/test_mtp_correctness.py --ignore=tests/long_term/spec_decode/e2e/test_v1_spec_decode.py --ignore=tests/long_term/spec_decode/e2e/test_v1_mtp_correctness.py
104104
pytest -sv tests/long_term/test_accuracy.py
105105
else
106-
VLLM_USE_MODELSCOPE=True pytest -sv tests/long_term/test_deepseek_v2_lite_tp2_accuracy.py
106+
pytest -sv tests/long_term/test_accuracy.py
107107
fi

tests/long_term/test_accuracy.py

Lines changed: 217 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -16,74 +16,131 @@
1616
# This file is a part of the vllm-ascend project.
1717
# Adapted from vllm-project/blob/main/tests/entrypoints/llm/test_accuracy.py
1818
#
19-
2019
import gc
2120
import multiprocessing
21+
import os
22+
import signal
23+
import subprocess
2224
import sys
25+
import time
2326
from multiprocessing import Queue
2427

2528
import lm_eval
2629
import pytest
30+
import requests
2731
import torch
2832

33+
SERVER_HOST = "127.0.0.1"
34+
SERVER_PORT = 8000
35+
HEALTH_URL = f"http://{SERVER_HOST}:{SERVER_PORT}/health"
36+
COMPLETIONS_URL = f"http://{SERVER_HOST}:{SERVER_PORT}/v1/completions"
37+
2938
# pre-trained model path on Hugging Face.
30-
MODEL_NAME = ["Qwen/Qwen2.5-0.5B-Instruct", "Qwen/Qwen2.5-VL-3B-Instruct"]
39+
# Qwen/Qwen2.5-0.5B-Instruct: accuracy test for unimodal model and DP.
40+
# Qwen/Qwen2.5-VL-3B-Instruct: accuracy test for multimodal model.
41+
# Qwen/Qwen3-30B-A3B: accuracy test for EP.
42+
# deepseek-ai/DeepSeek-V2-Lite: accuracy test for TP.
43+
MODEL_NAME = [
44+
"Qwen/Qwen2.5-0.5B-Instruct", "Qwen/Qwen2.5-VL-3B-Instruct",
45+
"Qwen/Qwen3-30B-A3B", "deepseek-ai/DeepSeek-V2-Lite"
46+
]
47+
3148
# Benchmark configuration mapping models to evaluation tasks:
3249
# - Text model: GSM8K (grade school math reasoning)
3350
# - Vision-language model: MMMU Art & Design validation (multimodal understanding)
3451
TASK = {
3552
"Qwen/Qwen2.5-0.5B-Instruct": "gsm8k",
36-
"Qwen/Qwen2.5-VL-3B-Instruct": "mmmu_val_art_and_design"
53+
"Qwen/Qwen2.5-VL-3B-Instruct": "mmmu_val_art_and_design",
54+
"Qwen/Qwen3-30B-A3B": "gsm8k",
55+
"deepseek-ai/DeepSeek-V2-Lite": "gsm8k"
3756
}
3857
# Answer validation requiring format consistency.
3958
FILTER = {
4059
"Qwen/Qwen2.5-0.5B-Instruct": "exact_match,strict-match",
41-
"Qwen/Qwen2.5-VL-3B-Instruct": "acc,none"
60+
"Qwen/Qwen2.5-VL-3B-Instruct": "acc,none",
61+
"Qwen/Qwen3-30B-A3B": "exact_match,strict-match",
62+
"deepseek-ai/DeepSeek-V2-Lite": "exact_match,strict-match"
4263
}
4364
# 3% relative tolerance for numerical accuracy.
4465
RTOL = 0.03
4566
# Baseline accuracy after VLLM optimization.
4667
EXPECTED_VALUE = {
4768
"Qwen/Qwen2.5-0.5B-Instruct": 0.316,
48-
"Qwen/Qwen2.5-VL-3B-Instruct": 0.541
69+
"Qwen/Qwen2.5-VL-3B-Instruct": 0.541,
70+
"Qwen/Qwen3-30B-A3B": 0.888,
71+
"deepseek-ai/DeepSeek-V2-Lite": 0.376
4972
}
5073
# Maximum context length configuration for each model.
5174
MAX_MODEL_LEN = {
5275
"Qwen/Qwen2.5-0.5B-Instruct": 4096,
53-
"Qwen/Qwen2.5-VL-3B-Instruct": 8192
76+
"Qwen/Qwen2.5-VL-3B-Instruct": 8192,
77+
"Qwen/Qwen3-30B-A3B": 4096,
78+
"deepseek-ai/DeepSeek-V2-Lite": 4096
5479
}
5580
# Model types distinguishing text-only and vision-language models.
5681
MODEL_TYPE = {
5782
"Qwen/Qwen2.5-0.5B-Instruct": "vllm",
58-
"Qwen/Qwen2.5-VL-3B-Instruct": "vllm-vlm"
83+
"Qwen/Qwen2.5-VL-3B-Instruct": "vllm-vlm",
84+
"Qwen/Qwen3-30B-A3B": "vllm",
85+
"deepseek-ai/DeepSeek-V2-Lite": "vllm"
5986
}
6087
# wrap prompts in a chat-style template.
61-
APPLY_CHAT_TEMPLATE = {"vllm": False, "vllm-vlm": True}
88+
APPLY_CHAT_TEMPLATE = {
89+
"Qwen/Qwen2.5-0.5B-Instruct": False,
90+
"Qwen/Qwen2.5-VL-3B-Instruct": True,
91+
"Qwen/Qwen3-30B-A3B": False,
92+
"deepseek-ai/DeepSeek-V2-Lite": False
93+
}
6294
# Few-shot examples handling as multi-turn dialogues.
63-
FEWSHOT_AS_MULTITURN = {"vllm": False, "vllm-vlm": True}
95+
FEWSHOT_AS_MULTITURN = {
96+
"Qwen/Qwen2.5-0.5B-Instruct": False,
97+
"Qwen/Qwen2.5-VL-3B-Instruct": True,
98+
"Qwen/Qwen3-30B-A3B": False,
99+
"deepseek-ai/DeepSeek-V2-Lite": False
100+
}
101+
# MORE_ARGS extra CLI args per model
102+
MORE_ARGS = {
103+
"Qwen/Qwen2.5-0.5B-Instruct":
104+
None,
105+
"Qwen/Qwen2.5-VL-3B-Instruct":
106+
None,
107+
"Qwen/Qwen3-30B-A3B":
108+
"tensor_parallel_size=4,enable_expert_parallel=True,enforce_eager=True",
109+
"deepseek-ai/DeepSeek-V2-Lite":
110+
"tensor_parallel_size=4,trust_remote_code=True,enforce_eager=True"
111+
}
112+
113+
multiprocessing.set_start_method("spawn", force=True)
114+
64115

116+
def get_available_npu_count():
117+
return torch.npu.device_count()
65118

66-
def run_test(queue, model, max_model_len, model_type):
119+
120+
def run_test(queue, model, max_model_len, model_type, more_args):
67121
try:
68122
if model_type == "vllm-vlm":
69123
model_args = (f"pretrained={model},max_model_len={max_model_len},"
70124
"dtype=auto,max_images=2")
71125
else:
72126
model_args = (f"pretrained={model},max_model_len={max_model_len},"
73127
"dtype=auto")
128+
if more_args is not None:
129+
model_args = f"{model_args},{more_args}"
74130
results = lm_eval.simple_evaluate(
75131
model=model_type,
76132
model_args=model_args,
77133
tasks=TASK[model],
78134
batch_size="auto",
79-
apply_chat_template=APPLY_CHAT_TEMPLATE[model_type],
80-
fewshot_as_multiturn=FEWSHOT_AS_MULTITURN[model_type],
135+
apply_chat_template=APPLY_CHAT_TEMPLATE[model],
136+
fewshot_as_multiturn=FEWSHOT_AS_MULTITURN[model],
81137
)
82138
result = results["results"][TASK[model]][FILTER[model]]
83139
print("result:", result)
84140
queue.put(result)
85141
except Exception as e:
86-
queue.put(e)
142+
error_msg = f"{type(e).__name__}: {str(e)}"
143+
queue.put(error_msg)
87144
sys.exit(1)
88145
finally:
89146
gc.collect()
@@ -93,19 +150,162 @@ def run_test(queue, model, max_model_len, model_type):
93150
@pytest.mark.parametrize("model", MODEL_NAME)
94151
@pytest.mark.parametrize("VLLM_USE_V1", ["0", "1"])
95152
def test_lm_eval_accuracy(monkeypatch: pytest.MonkeyPatch, model, VLLM_USE_V1):
153+
os.environ["VLLM_USE_V1"] = VLLM_USE_V1
154+
npu_count = get_available_npu_count()
96155
if model == "Qwen/Qwen2.5-VL-3B-Instruct" and VLLM_USE_V1 == "1":
97156
pytest.skip(
98-
"Qwen2.5-VL-3B-Instruct is not supported when VLLM_USE_V1=1")
99-
with monkeypatch.context() as m:
100-
m.setenv("VLLM_USE_V1", VLLM_USE_V1)
157+
"skip test multimodal model accuracy for {model} when VLLM_USE_V1={VLLM_USE_V1} and tp={npu_count}"
158+
)
159+
if (model == "Qwen/Qwen2.5-VL-3B-Instruct"
160+
or model == "Qwen/Qwen2.5-0.5B-Instruct") and npu_count != 1:
161+
pytest.skip(
162+
"skip test accuracy for {model} when VLLM_USE_V1={VLLM_USE_V1} and tp={npu_count}"
163+
)
164+
if (model == "Qwen/Qwen3-30B-A3B"
165+
or model == "deepseek-ai/DeepSeek-V2-Lite") and (
166+
os.getenv("VLLM_USE_V1") != "1" or npu_count != 4):
167+
pytest.skip(
168+
"skip test accuracy for {model} when VLLM_USE_V1={VLLM_USE_V1} and tp={npu_count}"
169+
)
170+
with monkeypatch.context():
101171
result_queue: Queue[float] = multiprocessing.Queue()
102172
p = multiprocessing.Process(target=run_test,
103173
args=(result_queue, model,
104174
MAX_MODEL_LEN[model],
105-
MODEL_TYPE[model]))
175+
MODEL_TYPE[model], MORE_ARGS[model]))
106176
p.start()
107177
p.join()
108178
result = result_queue.get()
109179
print(result)
110180
assert (EXPECTED_VALUE[model] - RTOL < result < EXPECTED_VALUE[model] + RTOL), \
111181
f"Expected: {EXPECTED_VALUE[model]}±{RTOL} | Measured: {result}"
182+
183+
184+
@pytest.mark.parametrize("max_tokens", [10])
185+
@pytest.mark.parametrize("VLLM_USE_V1", ["1"])
186+
@pytest.mark.parametrize("model", ["Qwen/Qwen2.5-0.5B-Instruct"])
187+
def test_lm_eval_accuracy_dp(model, max_tokens, VLLM_USE_V1):
188+
os.environ["VLLM_USE_V1"] = VLLM_USE_V1
189+
npu_count = get_available_npu_count()
190+
if npu_count != 4:
191+
pytest.skip(
192+
"skip test dp accuracy for {model} when VLLM_USE_V1={VLLM_USE_V1} and tp={npu_count}"
193+
)
194+
195+
log_file = open("accuracy.log", "a")
196+
cmd = [
197+
"vllm", "serve", model, "--max_model_len", "4096",
198+
"--tensor_parallel_size", "2", "--data_parallel_size", "2"
199+
]
200+
server_proc = subprocess.Popen(cmd,
201+
stdout=log_file,
202+
stderr=subprocess.DEVNULL)
203+
204+
try:
205+
for _ in range(300):
206+
try:
207+
r = requests.get(HEALTH_URL, timeout=1)
208+
if r.status_code == 200:
209+
break
210+
except requests.exceptions.RequestException:
211+
pass
212+
time.sleep(1)
213+
else:
214+
log_file.flush()
215+
log_file.seek(0)
216+
log_content = log_file.read()
217+
pytest.fail(
218+
f"vLLM serve did not become healthy after 300s: {HEALTH_URL}\n"
219+
f"==== vLLM Serve Log Start ===\n{log_content}\n==== vLLM Serve Log End ==="
220+
)
221+
222+
prompt = "bejing is a"
223+
payload = {
224+
"prompt": prompt,
225+
"max_tokens": max_tokens,
226+
"sampling_params": {
227+
"temperature": 0.0,
228+
"top_p": 1.0,
229+
"seed": 123
230+
}
231+
}
232+
resp = requests.post(COMPLETIONS_URL, json=payload, timeout=30)
233+
resp.raise_for_status()
234+
data = resp.json()
235+
236+
generated = data["choices"][0]["text"].strip()
237+
expected = "city in north china, it has many famous attractions"
238+
assert generated == expected, f"Expected `{expected}`, got `{generated}`"
239+
240+
finally:
241+
server_proc.send_signal(signal.SIGINT)
242+
try:
243+
server_proc.wait(timeout=10)
244+
except subprocess.TimeoutExpired:
245+
server_proc.kill()
246+
server_proc.wait()
247+
248+
249+
@pytest.mark.parametrize("max_tokens", [10])
250+
@pytest.mark.parametrize("VLLM_USE_V1", ["1"])
251+
@pytest.mark.parametrize("model", ["Qwen/Qwen3-30B-A3B"])
252+
def test_lm_eval_accuracy_etp(model, max_tokens, VLLM_USE_V1):
253+
os.environ["VLLM_USE_V1"] = VLLM_USE_V1
254+
npu_count = get_available_npu_count()
255+
if npu_count != 4:
256+
pytest.skip(
257+
"skip test etp accuracy for {model} when VLLM_USE_V1={VLLM_USE_V1} and tp={npu_count}"
258+
)
259+
log_file = open("accuracy.log", "a")
260+
cmd = [
261+
"vllm", "serve", model, "--tensor_parallel_size", "4",
262+
"--enforce_eager", "True", "--enable_expert_parallel", "True",
263+
"--additional_config", '{"expert_tensor_parallel_size": "4"}'
264+
]
265+
server_proc = subprocess.Popen(cmd,
266+
stdout=log_file,
267+
stderr=subprocess.DEVNULL)
268+
269+
try:
270+
for _ in range(300):
271+
try:
272+
r = requests.get(HEALTH_URL, timeout=1)
273+
if r.status_code == 200:
274+
break
275+
except requests.exceptions.RequestException:
276+
pass
277+
time.sleep(1)
278+
else:
279+
log_file.flush()
280+
log_file.seek(0)
281+
log_content = log_file.read()
282+
pytest.fail(
283+
f"vLLM serve did not become healthy after 300s: {HEALTH_URL}\n"
284+
f"==== vLLM Serve Log Start ===\n{log_content}\n==== vLLM Serve Log End ==="
285+
)
286+
287+
prompt = "bejing is a"
288+
payload = {
289+
"prompt": prompt,
290+
"max_tokens": max_tokens,
291+
"sampling_params": {
292+
"temperature": 0.0,
293+
"top_p": 1.0,
294+
"seed": 123
295+
}
296+
}
297+
resp = requests.post(COMPLETIONS_URL, json=payload, timeout=30)
298+
resp.raise_for_status()
299+
data = resp.json()
300+
301+
generated = data["choices"][0]["text"].strip()
302+
expected = "city in china. it is the capital city of"
303+
assert generated == expected, f"Expected `{expected}`, got `{generated}`"
304+
305+
finally:
306+
server_proc.send_signal(signal.SIGINT)
307+
try:
308+
server_proc.wait(timeout=10)
309+
except subprocess.TimeoutExpired:
310+
server_proc.kill()
311+
server_proc.wait()

tests/long_term/test_deepseek_v2_lite_tp2_accuracy.py

Lines changed: 0 additions & 71 deletions
This file was deleted.

0 commit comments

Comments
 (0)