-
-
Notifications
You must be signed in to change notification settings - Fork 5.1k
/
spec_decode_worker.py
610 lines (507 loc) · 25.9 KB
/
spec_decode_worker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
from functools import cached_property
from typing import Any, Dict, List, Optional, Tuple
import torch
from vllm.distributed.communication_op import broadcast_tensor_dict
from vllm.logger import init_logger
from vllm.model_executor.layers.rejection_sampler import RejectionSampler
from vllm.sequence import (ExecuteModelRequest, SamplerOutput,
SequenceGroupMetadata)
from vllm.spec_decode.batch_expansion import BatchExpansionTop1Scorer
from vllm.spec_decode.interfaces import (SpeculativeProposals,
SpeculativeScorer, SpeculativeScores)
from vllm.spec_decode.metrics import AsyncMetricsCollector
from vllm.spec_decode.multi_step_worker import MultiStepWorker
from vllm.spec_decode.ngram_worker import NGramWorker
from vllm.spec_decode.util import (create_sequence_group_output,
get_all_num_logprobs, get_all_seq_ids,
get_sampled_token_logprobs, nvtx_range,
split_batch_by_proposal_len)
from vllm.worker.worker import Worker
from vllm.worker.worker_base import LoraNotSupportedWorkerBase, WorkerBase
logger = init_logger(__name__)
def create_spec_worker(*args, **kwargs) -> "SpecDecodeWorker":
"""Helper method that is the entrypoint for Executors which use
WorkerWrapper. It constructs a SpecDecodeWorker from the speculative config.
"""
assert "speculative_config" in kwargs
speculative_config = kwargs.get("speculative_config")
assert speculative_config is not None
target_worker = Worker(*args, **kwargs)
draft_worker_kwargs = kwargs.copy()
# Override draft-model specific worker args.
draft_worker_kwargs.update(
model_config=speculative_config.draft_model_config,
parallel_config=speculative_config.draft_parallel_config,
ngram_prompt_lookup_max=speculative_config.ngram_prompt_lookup_max,
ngram_prompt_lookup_min=speculative_config.ngram_prompt_lookup_min,
# TODO allow draft-model specific load config.
#load_config=load_config,
)
spec_decode_worker = SpecDecodeWorker.create_worker(
scorer_worker=target_worker,
draft_worker_kwargs=draft_worker_kwargs,
disable_by_batch_size=speculative_config.
speculative_disable_by_batch_size,
)
return spec_decode_worker
class SpecDecodeWorker(LoraNotSupportedWorkerBase):
"""Worker which implements speculative decoding.
Speculative decoding reduces decoding per-token latency by using a proposal
method, such as a small draft model, to speculate ahead of a larger LLM. The
probabilities of the speculative tokens are then determined by the larger
LLM, after which some verification routine determines which (if any) of the
speculative tokens are accepted by the larger LLM.
See https://github.com/vllm-project/vllm/pull/2188 and
https://github.com/vllm-project/vllm/pull/3103 for more info.
The current implementation has the following limitations:
* Only draft-model proposal is implemented (contributions for more forms are
welcome!).
* Only top-1 proposal and scoring are implemented. Tree-attention is left as
future work.
* Only lossless rejection sampling is supported. Contributions adding lossy
verification routines are welcome (e.g. Medusa's typical acceptance).
* All sequences in a batch must have the same proposal length, or zero. This
can be improved by having per-sequence speculation in the future.
* The scoring forward pass is done without an MQA kernel, which is
suboptimal especially as the batch size, proposal length, and sequence
lengths grow. Contributions to add a MQA scoring are welcome once
correctness tests pass.
More info here https://docs.google.com/document/d/1T-JaS2T1NRfdP51qzqpyakoCXxSXTtORppiwaj5asxA/edit.
"""
@classmethod
def create_worker(
cls,
scorer_worker: WorkerBase,
draft_worker_kwargs: Dict[str, Any],
disable_by_batch_size: Optional[int],
) -> "SpecDecodeWorker":
ngram_prompt_lookup_max = (
draft_worker_kwargs.pop("ngram_prompt_lookup_max"))
ngram_prompt_lookup_min = (
draft_worker_kwargs.pop("ngram_prompt_lookup_min"))
disable_bonus_tokens = True
if ngram_prompt_lookup_max > 0:
disable_bonus_tokens = False
proposer_worker = NGramWorker(**draft_worker_kwargs)
proposer_worker.set_ngram_window_size(ngram_prompt_lookup_min,
ngram_prompt_lookup_max)
else:
proposer_worker = MultiStepWorker(**draft_worker_kwargs)
logger.info("Configuring SpecDecodeWorker with proposer=%s",
type(proposer_worker))
return SpecDecodeWorker(
proposer_worker,
scorer_worker,
disable_by_batch_size=disable_by_batch_size,
rejection_sampler=RejectionSampler(
disable_bonus_tokens=disable_bonus_tokens, ))
def __init__(
self,
proposer_worker: WorkerBase,
scorer_worker: WorkerBase,
rejection_sampler: RejectionSampler,
metrics_collector: Optional[AsyncMetricsCollector] = None,
disable_by_batch_size: Optional[int] = None,
):
"""
Create a SpecDecodeWorker.
Args:
proposer_worker: A worker that can produce speculative tokens for
sequences.
scorer_worker: A worker that produces probabilities of speculative
tokens according to some base model. Typically a vanilla vLLM
Worker.
rejection_sampler: A Torch module used to perform modified rejection
sampling for speculative decoding.
disable_by_batch_size: If the batch size is larger than this,
disable speculative decoding for new incoming requests.
metrics_collector: Helper class for collecting metrics; can be set
for testing purposes.
"""
self.proposer_worker = proposer_worker
self.scorer_worker = scorer_worker
self.disable_by_batch_size = disable_by_batch_size or float("inf")
self.rejection_sampler = rejection_sampler
self._metrics = AsyncMetricsCollector(
rejection_sampler
) if metrics_collector is None else metrics_collector
self.probs_dtype = self.rejection_sampler.probs_dtype
self.token_id_dtype = self.rejection_sampler.token_id_dtype
# Lazy initiazliation.
self.scorer: SpeculativeScorer
def init_device(self) -> None:
"""Initialize both scorer and proposer models.
"""
# The scorer worker model is initialized first in case the proposer
# model has a smaller TP degree than the target worker.
self.scorer_worker.init_device()
self.proposer_worker.init_device()
# NOTE(cade): load_model is not part of the WorkerBase interface.
self.scorer_worker.load_model()
self.proposer_worker.load_model()
self._metrics.init_gpu_tensors(self.rank)
self.rejection_sampler.init_gpu_tensors(self.rank)
self.scorer = BatchExpansionTop1Scorer(
scorer_worker=self.scorer_worker,
device=self.device,
vocab_size=self._vocab_size)
self._configure_model_sampler_for_spec_decode()
def load_model(self, *args, **kwargs):
pass
def _configure_model_sampler_for_spec_decode(self):
"""Configure model sampler to emit GPU tensors. This allows spec decode
to keep data on device without transferring to CPU and serializing,
which significantly reduces overhead of rejection sampling.
NOTE(cade): This breaks abstraction boundaries pretty badly. The better
design is to have the "move to CPU and serialize" sampling decision be
done outside of the model/sampler; this way the "last-mile" worker
object which interfaces with the scheduler can serialize and incur the
performance hit as necessary. This allows us to run the worker several
iterations in a row without incurring the "move to CPU and serialize"
performance penalty.
Since this requires a large change to vLLM, we defer it to later and
temporarily accept this broken abstraction boundary.
NOTE(cade): This will require a special check if the proposer worker
does not have a sampler (e.g. ngram speculation).
"""
(self.scorer_worker.model_runner.model.sampler.include_gpu_probs_tensor
) = True
self.proposer_worker.set_include_gpu_probs_tensor()
def determine_num_available_blocks(self) -> Tuple[int, int]:
"""Determine the number of cache blocks to use.
This is done by profiling the scorer model (which is typically the
larger of the two). Then the total memory which would be used by the
scorer cache is divided evenly between the proposer and scorer model KV,
such that the number of blocks is equal in both KV caches.
"""
num_gpu_blocks, num_cpu_blocks = (
self.scorer_worker.determine_num_available_blocks())
scorer_cache_block_size_bytes = (
self.scorer_worker.get_cache_block_size_bytes())
proposer_cache_block_size_bytes = (
self.proposer_worker.get_cache_block_size_bytes())
new_num_gpu_blocks = split_num_cache_blocks_evenly(
scorer_cache_block_size_bytes, proposer_cache_block_size_bytes,
num_gpu_blocks)
return new_num_gpu_blocks, num_cpu_blocks
def initialize_cache(self, num_gpu_blocks: int,
num_cpu_blocks: int) -> None:
"""Initialize the cache engine of the scorer and proposer workers.
"""
self.scorer_worker.initialize_cache(num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks)
self.proposer_worker.initialize_cache(num_gpu_blocks=num_gpu_blocks,
num_cpu_blocks=num_cpu_blocks)
@torch.inference_mode()
def execute_model(
self,
execute_model_req: Optional[ExecuteModelRequest] = None
) -> List[SamplerOutput]:
"""Perform speculative decoding on the input batch.
"""
if self.rank != self._driver_rank:
self._run_non_driver_rank()
return []
if execute_model_req is None:
# This signals that there's no more requests to process for now.
# All workers are running infinite loop with broadcast_tensor_dict,
# and it stops the loop when the driver broadcasts an empty input.
# Send an empty input to notify all other workers to stop their
# execution loop.
broadcast_tensor_dict({}, src=0)
return []
disable_all_speculation = self._should_disable_all_speculation(
execute_model_req)
num_lookahead_slots = execute_model_req.num_lookahead_slots
# Broadcast how many lookahead slots are scheduled for this step, and
# whether all speculation is disabled, to all non-driver workers.
# This is required as if the number of draft model runs changes
# dynamically, the non-driver workers won't know unless we perform a
# communication to inform then.
broadcast_dict = dict(
num_lookahead_slots=num_lookahead_slots,
disable_all_speculation=disable_all_speculation,
)
broadcast_tensor_dict(broadcast_dict, src=self._driver_rank)
assert execute_model_req.seq_group_metadata_list is not None, (
"speculative decoding requires non-None seq_group_metadata_list")
self._maybe_disable_speculative_tokens(
disable_all_speculation, execute_model_req.seq_group_metadata_list)
# Speculative decoding is disabled in the following cases:
# 1. Prefill phase: Speculative decoding is not
# used during the prefill phase.
# 2. Auto-disable enabled: The running queue size exceeds
# the specified threshold.
# 3. No request: There are no requests in the batch.
# In any of these cases, the proposer and scorer workers
# are called normally.
if num_lookahead_slots == 0 or len(
execute_model_req.seq_group_metadata_list
) == 0 or disable_all_speculation:
return self._run_no_spec(execute_model_req,
skip_proposer=disable_all_speculation)
return self._run_speculative_decoding_step(execute_model_req,
num_lookahead_slots)
@torch.inference_mode()
def start_worker_execution_loop(self) -> None:
"""Execute model loop to perform speculative decoding
in parallel worker."""
while self._run_non_driver_rank():
pass
def _should_disable_all_speculation(
self, execute_model_req: ExecuteModelRequest) -> bool:
# When the batch size is too large, disable speculative decoding
# to stop trading off throughput for latency.
disable_all_speculation = (execute_model_req.running_queue_size >=
self.disable_by_batch_size)
return disable_all_speculation
def _maybe_disable_speculative_tokens(
self, disable_all_speculation: bool,
seq_group_metadata_list: List[SequenceGroupMetadata]) -> None:
if not disable_all_speculation:
return
for seq_group_metadata in seq_group_metadata_list:
# Once num_speculative_tokens is set to 0, the spec decode
# of this request will be disabled forever.
# TODO(comaniac): We currently store spec decoding specific
# state in the global data structure, but we should maintain
# this state within spec decode worker.
seq_group_metadata.num_speculative_tokens = 0
@nvtx_range("spec_decode_worker._run_no_spec")
def _run_no_spec(self, execute_model_req: ExecuteModelRequest,
skip_proposer: bool) -> List[SamplerOutput]:
"""Run a single generation step without any speculation. The input is
sent to the proposer and scorer model so that the KV cache is consistent
between the two. When skip_proposer is True, the proposer model is
not called, meaning that the kv-cache in proposer for requests is not
updated, so they cannot enable spec decode in the rest decoding.
"""
if not skip_proposer:
self.proposer_worker.execute_model(execute_model_req)
sampler_output = self.scorer_worker.execute_model(execute_model_req)
assert len(sampler_output) == 1
sampler_output = sampler_output[0]
# Clear device tensors from sampler output. This reduces communication
# overhead when the engine runs in a different process than the workers.
sampler_output.probs = None
sampler_output.sampled_tokens = None
sampler_output.logprobs = None
return [sampler_output]
def _run_non_driver_rank(self) -> bool:
"""Run proposer and verifier model in non-driver workers. This is used
for both speculation cases (num_lookahead_slots>0) and non-speculation
cases (e.g. prefill).
Returns True iff there are remaining sequences to process.
"""
assert self.rank != self._driver_rank
data = broadcast_tensor_dict(src=self._driver_rank)
if not data:
return False
num_lookahead_slots = data["num_lookahead_slots"]
# Even if num_lookahead_slots is zero, we want to run the proposer model
# as it may have KV.
#
# We run the proposer once per lookahead slot. In the future we should
# delegate how many times it runs to the proposer.
for _ in range(max(num_lookahead_slots, 1)):
self.proposer_worker.execute_model()
self.scorer_worker.execute_model()
return True
@nvtx_range("spec_decode_worker._run_speculative_decoding_step")
def _run_speculative_decoding_step(
self, execute_model_req: ExecuteModelRequest,
num_lookahead_slots: int) -> List[SamplerOutput]:
"""Execute a single step of speculative decoding.
This invokes the proposer worker to get k speculative tokens for each
sequence, then scores each speculative token using the scoring worker.
Returns a list of SamplerOutput, each containing a single token per
sequence.
"""
assert num_lookahead_slots == execute_model_req.num_lookahead_slots
# Generate proposals using draft worker.
proposals = self.proposer_worker.get_spec_proposals(execute_model_req)
proposal_scores = self.scorer.score_proposals(
execute_model_req,
proposals,
)
accepted_token_ids, target_logprobs = self._verify_tokens(
execute_model_req.seq_group_metadata_list, proposal_scores,
proposals, execute_model_req.num_lookahead_slots)
return self._create_output_sampler_list(
execute_model_req.seq_group_metadata_list,
accepted_token_ids,
target_logprobs=target_logprobs,
k=execute_model_req.num_lookahead_slots)
@nvtx_range("spec_decode_worker._verify_tokens")
def _verify_tokens(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
proposal_scores: SpeculativeScores,
proposals: SpeculativeProposals,
max_proposal_len: int,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Determine which speculative tokens are accepted using the
probabilities of each token according to the proposer and scorer models.
Returns a tuple of Tensors, one for the accepted token ids and one for
the logprobs according to the scoring model.
"""
proposal_lens_list = proposals.proposal_lens.tolist()
# vLLM currently only supports proposal lens equal to zero or the batch
# proposal len. This adds some complexity (splitting the batch into spec
# and non spec sequences) and should be removed in the future. It can be
# done by supporting per-sequence proposal lens.
_, spec_indices = split_batch_by_proposal_len(
seq_group_metadata_list,
proposal_lens_list,
select_proposal_len_zero=False)
_, non_spec_indices = split_batch_by_proposal_len(
seq_group_metadata_list,
proposal_lens_list,
select_proposal_len_zero=True)
original_indices = spec_indices + non_spec_indices
# Get probabilities of target model, excluding bonus token.
proposal_verifier_probs = proposal_scores.probs[spec_indices, :-1]
# Get non-speculative sampled tokens from target model.
non_spec_token_ids = proposal_scores.token_ids[non_spec_indices]
# Get bonus tokens from target model.
bonus_token_ids = proposal_scores.token_ids[spec_indices, -1:]
# Get probabilities according to proposal method.
proposal_probs = proposals.proposal_probs[spec_indices]
# Get proposed tokens.
proposal_token_ids = proposals.proposal_token_ids[spec_indices]
accepted_token_ids = self.rejection_sampler(
target_probs=proposal_verifier_probs,
bonus_token_ids=bonus_token_ids,
draft_probs=proposal_probs,
draft_token_ids=proposal_token_ids,
)
# Append output tokens from non-speculative sequences to
# the accepted token ids tensor.
non_spec_token_ids = non_spec_token_ids.expand(-1, max_proposal_len +
1).clone()
non_spec_token_ids[:, 1:] = -1
accepted_token_ids = torch.cat(
[accepted_token_ids, non_spec_token_ids])
logprobs = proposal_scores.logprobs
# Rearrange so that results are in the order of the original seq group
# metadata.
accepted_token_ids[original_indices] = accepted_token_ids.clone()
return accepted_token_ids, logprobs
def _create_output_sampler_list(
self,
seq_group_metadata_list: List[SequenceGroupMetadata],
accepted_token_ids: torch.Tensor, # shape: [batch_size, k+1]
target_logprobs: torch.Tensor, # shape: [batch_size, k+1, vocab_size]
k: int,
) -> List[SamplerOutput]:
"""Given the accepted token ids, create a list of SamplerOutput.
The output is padded with -1 tokens such that each sequence has
the same number of outputs.
"""
batch_size, num_steps = accepted_token_ids.shape
# Organize input tensors by step instead of by sequence.
target_logprobs_by_step = target_logprobs.transpose(0, 1)
accepted_token_ids_by_step = accepted_token_ids.transpose(0, 1)
# Get the logprobs/rank of the accepted tokens.
(accepted_token_id_ranks_by_step,
accepted_token_id_logprobs_by_step) = get_sampled_token_logprobs(
logprob_tensor=target_logprobs_by_step,
sampled_token_ids=accepted_token_ids_by_step,
)
# Get the top-k logprobs (which may or may not include the logprob of
# the accepted token).
(topk_logprobs_by_step,
topk_indices_by_step) = target_logprobs_by_step.topk(
k=self.scorer_worker.model_config.max_logprobs,
dim=-1,
)
# Get the sequence ids and num_logprobs (sampling parameter) in the
# batch.
seq_ids = get_all_seq_ids(seq_group_metadata_list)
num_logprobs_per_seq = get_all_num_logprobs(seq_group_metadata_list)
# Serialize all tensors to CPU Python lists.
accepted_token_ids_by_step = accepted_token_ids_by_step.tolist()
accepted_token_id_ranks_by_step = (
accepted_token_id_ranks_by_step.tolist())
accepted_token_id_logprobs_by_step = (
accepted_token_id_logprobs_by_step.tolist())
topk_logprobs_by_step = topk_logprobs_by_step.tolist()
topk_indices_by_step = topk_indices_by_step.tolist()
# Construct the output on a per-step, per-sequence basis.
sampler_output_list = []
for step_index in range(num_steps):
if all(token_id == -1
for token_id in accepted_token_ids_by_step[step_index]):
break
step_output_token_ids = []
for sequence_index in range(batch_size):
# Each sequence may have a different num_logprobs; retrieve it.
num_logprobs = num_logprobs_per_seq[sequence_index]
step_output_token_ids.append(
create_sequence_group_output(
token_id=accepted_token_ids_by_step[step_index]
[sequence_index],
token_id_logprob_rank=accepted_token_id_ranks_by_step[
step_index][sequence_index],
token_id_logprob=accepted_token_id_logprobs_by_step[
step_index][sequence_index],
seq_id=seq_ids[sequence_index],
topk_token_ids=topk_indices_by_step[step_index]
[sequence_index][:num_logprobs],
topk_logprobs=topk_logprobs_by_step[step_index]
[sequence_index][:num_logprobs],
))
sampler_output_list.append(
SamplerOutput(outputs=step_output_token_ids))
maybe_rejsample_metrics = (
self._metrics.maybe_collect_rejsample_metrics(k))
if maybe_rejsample_metrics is not None:
sampler_output_list[
0].spec_decode_worker_metrics = maybe_rejsample_metrics
return sampler_output_list
@cached_property
def _vocab_size(self) -> int:
"""Get the vocab size of the model and make sure it's consistent between
draft and target workers.
"""
vocab_sizes = [
worker.vocab_size
for worker in [self.proposer_worker, self.scorer_worker]
]
assert all(vocab_sizes[0] == vocab_size for vocab_size in vocab_sizes)
return vocab_sizes[0]
@property
def rank(self):
return self.scorer_worker.rank
@property
def device(self):
return self.scorer_worker.device
@property
def _driver_rank(self) -> int:
return 0
def get_cache_block_size_bytes(self):
"""Return the size of a cache block in bytes.
This function is only used to compose workers within a SpecDecodeWorker.
We leave composing a SpecDecodeWorker within a SpecDecodeWorker
undefined for now, although it could be implemented in the future.
See https://arxiv.org/abs/2308.04623.
"""
raise NotImplementedError
def split_num_cache_blocks_evenly(scorer_cache_block_size_bytes: int,
proposer_cache_block_size_bytes: int,
total_num_gpu_blocks: int) -> int:
"""Given total_num_gpu_blocks, the number of GPU blocks that could be
allocate to the target model, this function calculates how many blocks
should be given to the draft and target model.
Note that usually the block size, in bytes, of each model is different,
as it's a function of number of KV/layer, number of heads, and hidden
dimension size.
Since the target and draft models allocate the same number of blocks, we
simply calculate the number of blocks where if allocated by both models,
the total memory usage from KV cache is no larger than the number of
blocks allocatable by the target model alone.
"""
new_num_gpu_blocks = int(
total_num_gpu_blocks * scorer_cache_block_size_bytes /
(proposer_cache_block_size_bytes + scorer_cache_block_size_bytes))
return new_num_gpu_blocks