Skip to content

Commit 3ce2624

Browse files
committed
Done
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
1 parent a9e58df commit 3ce2624

File tree

1 file changed

+5
-5
lines changed

1 file changed

+5
-5
lines changed

vllm/model_executor/models/transformers.py

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -43,7 +43,7 @@
4343
from vllm.model_executor.sampling_metadata import SamplingMetadata
4444
from vllm.sequence import IntermediateTensors
4545

46-
from .interfaces import SupportsLoRA, SupportsQuant
46+
from .interfaces import SupportsQuant
4747
from .utils import maybe_prefix
4848

4949
logger = init_logger(__name__)
@@ -108,7 +108,7 @@ def replace_linear_class(
108108
"rowwise": RowParallelLinear,
109109
}.get(style, ReplicatedLinear)
110110

111-
lora_cls_map = {
111+
lora_linear_cls = {
112112
ColumnParallelLinear: {
113113
True: ColumnParallelLinearWithShardedLoRA, # fully sharded
114114
False: ColumnParallelLinearWithLoRA # not fully sharded
@@ -117,7 +117,7 @@ def replace_linear_class(
117117
True: RowParallelLinearWithShardedLoRA,
118118
False: RowParallelLinearWithLoRA
119119
},
120-
# ReplicatedLinear doesn't supoort fully sharded LoRA yet,
120+
# ReplicatedLinear doesn't support fully sharded LoRA yet,
121121
# so we use the same class for both cases.
122122
ReplicatedLinear: {
123123
True: ReplicatedLinearWithLoRA,
@@ -144,7 +144,7 @@ def get_lora_class(cls, fully_sharded: bool = False):
144144
that supports fully sharded LoRA. Defaults to False.
145145
146146
"""
147-
return lora_cls_map[vllm_linear_cls][fully_sharded]
147+
return lora_linear_cls[vllm_linear_cls][fully_sharded]
148148

149149
return HFCompatibleLinear(
150150
input_size=linear.in_features,
@@ -154,7 +154,7 @@ def get_lora_class(cls, fully_sharded: bool = False):
154154
)
155155

156156

157-
class TransformersModel(nn.Module, SupportsQuant, SupportsLoRA):
157+
class TransformersModel(nn.Module, SupportsQuant):
158158
embedding_padding_modules = ["lm_head"]
159159
embedding_modules = ["embed_tokens"
160160
] # TODO transformers will have a util to get it

0 commit comments

Comments
 (0)