|
| 1 | +import argparse |
| 2 | +import asyncio |
| 3 | +import time |
| 4 | +from typing import List, Dict |
| 5 | +import json |
| 6 | + |
| 7 | +import ray |
| 8 | +from transformers import AutoTokenizer |
| 9 | +from fastapi import FastAPI, Request |
| 10 | +from fastapi.responses import StreamingResponse |
| 11 | +import uvicorn |
| 12 | + |
| 13 | +from cacheflow.sampling_params import SamplingParams |
| 14 | +from cacheflow.sequence import Sequence, SequenceGroup |
| 15 | +from cacheflow.master.server import (Server, add_server_arguments, |
| 16 | + initialize_ray_cluster) |
| 17 | +from cacheflow.worker.controller import DeviceID |
| 18 | +from cacheflow.utils import Counter, get_gpu_memory, get_cpu_memory |
| 19 | + |
| 20 | +app = FastAPI() |
| 21 | + |
| 22 | +class FastAPIFrontend: |
| 23 | + def __init__( |
| 24 | + self, |
| 25 | + model: str, |
| 26 | + model_path: str, |
| 27 | + pipeline_parallel_size: int, |
| 28 | + tensor_parallel_size: int, |
| 29 | + block_size: int, |
| 30 | + dtype: str, |
| 31 | + seed: int, |
| 32 | + swap_space: int, |
| 33 | + max_batch_size: int, |
| 34 | + num_nodes: int, |
| 35 | + num_devices_per_node: int, |
| 36 | + distributed_init_method: str, |
| 37 | + all_stage_devices: List[List[DeviceID]], |
| 38 | + ): |
| 39 | + self.block_size = block_size |
| 40 | + |
| 41 | + self.tokenizer = AutoTokenizer.from_pretrained(model) |
| 42 | + self.seq_group_counter = Counter() |
| 43 | + self.seq_counter = Counter() |
| 44 | + remote_server_class = ray.remote(num_cpus=0)(Server) |
| 45 | + self.server = remote_server_class.remote( |
| 46 | + model=model, |
| 47 | + model_path=model_path, |
| 48 | + pipeline_parallel_size=pipeline_parallel_size, |
| 49 | + tensor_parallel_size=tensor_parallel_size, |
| 50 | + block_size=block_size, |
| 51 | + dtype=dtype, |
| 52 | + seed=seed, |
| 53 | + swap_space=swap_space, |
| 54 | + max_batch_size=max_batch_size, |
| 55 | + num_nodes=num_nodes, |
| 56 | + num_devices_per_node=num_devices_per_node, |
| 57 | + distributed_init_method=distributed_init_method, |
| 58 | + all_stage_devices=all_stage_devices, |
| 59 | + gpu_memory=get_gpu_memory(), |
| 60 | + cpu_memory=get_cpu_memory(), |
| 61 | + ) |
| 62 | + |
| 63 | + self.running_seq_groups: Dict[int, SequenceGroup] = {} |
| 64 | + self.sequence_group_events: Dict[int, asyncio.Event] = {} |
| 65 | + self.is_server_running = False |
| 66 | + |
| 67 | + async def server_step(self): |
| 68 | + self.is_server_running = True |
| 69 | + updated_seq_groups = await self.server.step.remote() |
| 70 | + self.is_server_running = False |
| 71 | + for seq_group in updated_seq_groups: |
| 72 | + group_id = seq_group.group_id |
| 73 | + self.running_seq_groups[group_id] = seq_group |
| 74 | + self.sequence_group_events[group_id].set() |
| 75 | + |
| 76 | + async def generate(self, request_dict: Dict): |
| 77 | + prompt = request_dict["prompt"] |
| 78 | + sampling_params = SamplingParams.from_dict(request_dict) |
| 79 | + sampling_params.stop_token_ids.add(self.tokenizer.eos_token_id) |
| 80 | + token_ids = self.tokenizer.encode(prompt) |
| 81 | + seqs: List[Sequence] = [] |
| 82 | + for _ in range(sampling_params.n): |
| 83 | + seq_id = next(self.seq_counter) |
| 84 | + seq = Sequence(seq_id, token_ids, block_size=self.block_size) |
| 85 | + seqs.append(seq) |
| 86 | + |
| 87 | + group_id = next(self.seq_group_counter) |
| 88 | + seq_group = SequenceGroup(group_id, seqs) |
| 89 | + group_event = asyncio.Event() |
| 90 | + self.sequence_group_events[group_id] = group_event |
| 91 | + await self.server.add_sequence_groups.remote([(seq_group, sampling_params)]) |
| 92 | + while True: |
| 93 | + if not self.is_server_running: |
| 94 | + await self.server_step() |
| 95 | + # Wait for new output. Add a 1s timeout to prevent dead lock. |
| 96 | + await asyncio.wait_for(group_event.wait(), timeout=1) |
| 97 | + group_event.clear() |
| 98 | + seq_group = self.running_seq_groups[group_id] |
| 99 | + all_outputs = [] |
| 100 | + for seq in seq_group.seqs: |
| 101 | + token_ids = seq.get_token_ids() |
| 102 | + output = self.tokenizer.decode(token_ids, skip_special_tokens=True) |
| 103 | + all_outputs.append(output) |
| 104 | + ret = { |
| 105 | + "text": all_outputs, |
| 106 | + "error": 0, |
| 107 | + } |
| 108 | + yield (json.dumps(ret) + "\0").encode("utf-8") |
| 109 | + if seq_group.is_finished(): |
| 110 | + break |
| 111 | + |
| 112 | + |
| 113 | +@app.post("/generate") |
| 114 | +async def generate_stream(request: Request): |
| 115 | + request_dict = await request.json() |
| 116 | + return StreamingResponse(frontend.generate(request_dict)) |
| 117 | + |
| 118 | + |
| 119 | +if __name__ == "__main__": |
| 120 | + parser = argparse.ArgumentParser() |
| 121 | + parser.add_argument("--host", type=str, default="localhost") |
| 122 | + parser.add_argument("--port", type=int, default=10002) |
| 123 | + parser = add_server_arguments(parser) |
| 124 | + args = parser.parse_args() |
| 125 | + |
| 126 | + # TODO(zhuohan): Support pipeline parallelism. |
| 127 | + assert args.pipeline_parallel_size == 1, ( |
| 128 | + 'Pipeline parallelism is not supported yet.') |
| 129 | + |
| 130 | + (num_nodes, num_devices_per_node, distributed_init_method, |
| 131 | + all_stage_devices) = ( |
| 132 | + initialize_ray_cluster( |
| 133 | + pipeline_parallel_size=args.pipeline_parallel_size, |
| 134 | + tensor_parallel_size=args.tensor_parallel_size)) |
| 135 | + |
| 136 | + frontend = FastAPIFrontend( |
| 137 | + model=args.model, |
| 138 | + model_path=args.model_path, |
| 139 | + pipeline_parallel_size=args.pipeline_parallel_size, |
| 140 | + tensor_parallel_size=args.tensor_parallel_size, |
| 141 | + block_size=args.block_size, |
| 142 | + dtype=args.dtype, |
| 143 | + seed=args.seed, |
| 144 | + swap_space=args.swap_space, |
| 145 | + max_batch_size=args.max_batch_size, |
| 146 | + num_nodes=num_nodes, |
| 147 | + num_devices_per_node=num_devices_per_node, |
| 148 | + distributed_init_method=distributed_init_method, |
| 149 | + all_stage_devices=all_stage_devices, |
| 150 | + ) |
| 151 | + |
| 152 | + uvicorn.run(app, host=args.host, port=args.port, log_level="info") |
0 commit comments