2424from ....utils import RemoteOpenAIServer
2525
2626MODEL_NAME = "mistralai/Voxtral-Mini-3B-2507"
27+ MISTRAL_FORMAT_ARGS = [
28+ "--tokenizer_mode" , "mistral" , "--config_format" , "mistral" ,
29+ "--load_format" , "mistral"
30+ ]
2731
28- @pytest .fixture (params = [
29- pytest .param ({}, marks = pytest .mark .cpu_model ),
30- pytest .param (CHUNKED_PREFILL_KWARGS ),
31- ])
32+ @pytest .fixture ()
3233def server (request , audio_assets : AudioTestAssets ):
3334 args = [
34- "--dtype" , "bfloat16" , "--max-model-len" , "4096" , "--enforce-eager" ,
35- "--limit-mm-per-prompt" ,
36- json .dumps ({"audio" : len (audio_assets )}), "--trust-remote-code"
37- ] + params_kwargs_to_cli_args (request .param )
35+ "--enforce-eager" , "--limit-mm-per-prompt" ,
36+ json .dumps ({"audio" : len (audio_assets )}),
37+ ] + MISTRAL_FORMAT_ARGS
3838
3939 with RemoteOpenAIServer (MODEL_NAME ,
4040 args ,
@@ -70,14 +70,9 @@ def _get_prompt(audio_assets, question):
7070@pytest .mark .parametrize ("dtype" , ["half" ])
7171@pytest .mark .parametrize ("max_tokens" , [128 ])
7272@pytest .mark .parametrize ("num_logprobs" , [5 ])
73- @pytest .mark .parametrize ("vllm_kwargs" , [
74- pytest .param ({}, marks = pytest .mark .cpu_model ),
75- pytest .param (CHUNKED_PREFILL_KWARGS ),
76- ])
7773def test_models_with_multiple_audios (vllm_runner ,
7874 audio_assets : AudioTestAssets , dtype : str ,
79- max_tokens : int , num_logprobs : int ,
80- vllm_kwargs : dict ) -> None :
75+ max_tokens : int , num_logprobs : int ) -> None :
8176
8277 vllm_prompt = _get_prompt (audio_assets , MULTI_AUDIO_PROMPT )
8378 run_multi_audio_test (
@@ -89,7 +84,6 @@ def test_models_with_multiple_audios(vllm_runner,
8984 max_tokens = max_tokens ,
9085 num_logprobs = num_logprobs ,
9186 tokenizer_mode = "mistral" ,
92- ** vllm_kwargs ,
9387 )
9488
9589
@@ -98,10 +92,12 @@ async def test_online_serving(client, audio_assets: AudioTestAssets):
9892 """Exercises online serving with/without chunked prefill enabled."""
9993 def asset_to_chunk (asset ):
10094 audio = Audio .from_file (str (asset .get_local_path ()), strict = False )
101- return AudioChunk .from_audio (audio )
95+ audio .format = "wav"
96+ audio_dict = AudioChunk .from_audio (audio ).to_openai ()
97+ return audio_dict
10298
10399 audio_chunks = [
104- asset_to_chunk (asset ). to_openai () for asset in audio_assets
100+ asset_to_chunk (asset ) for asset in audio_assets
105101 ]
106102 messages = [{
107103 "role" :
0 commit comments