|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | + |
| 3 | +import contextlib |
| 4 | +import enum |
| 5 | +import json |
| 6 | +from typing import Optional |
| 7 | + |
| 8 | +import torch |
| 9 | + |
| 10 | +from vllm.config import VllmConfig |
| 11 | +from vllm.logger import init_logger |
| 12 | +from vllm.v1.core.sched.output import SchedulerOutput |
| 13 | +from vllm.v1.metrics.stats import SchedulerStats |
| 14 | +from vllm.version import __version__ as VLLM_VERSION |
| 15 | + |
| 16 | +logger = init_logger(__name__) |
| 17 | + |
| 18 | + |
| 19 | +def prepare_object_to_dump(obj) -> str: |
| 20 | + if isinstance(obj, str): |
| 21 | + return "'{obj}'" # Double quotes |
| 22 | + elif isinstance(obj, dict): |
| 23 | + dict_str = ', '.join({f'{str(k)}: {prepare_object_to_dump(v)}' \ |
| 24 | + for k, v in obj.items()}) |
| 25 | + return f'{{{dict_str}}}' |
| 26 | + elif isinstance(obj, list): |
| 27 | + return f"[{', '.join([prepare_object_to_dump(v) for v in obj])}]" |
| 28 | + elif isinstance(obj, set): |
| 29 | + return f"[{', '.join([prepare_object_to_dump(v) for v in list(obj)])}]" |
| 30 | + # return [prepare_object_to_dump(v) for v in list(obj)] |
| 31 | + elif isinstance(obj, tuple): |
| 32 | + return f"[{', '.join([prepare_object_to_dump(v) for v in obj])}]" |
| 33 | + elif isinstance(obj, enum.Enum): |
| 34 | + return repr(obj) |
| 35 | + elif isinstance(obj, torch.Tensor): |
| 36 | + # We only print the 'draft' of the tensor to not expose sensitive data |
| 37 | + # and to get some metadata in case of CUDA runtime crashed |
| 38 | + return (f"Tensor(shape={obj.shape}, " |
| 39 | + f"device={obj.device}," |
| 40 | + f"dtype={obj.dtype})") |
| 41 | + elif hasattr(obj, 'anon_repr'): |
| 42 | + return obj.anon_repr() |
| 43 | + elif hasattr(obj, '__dict__'): |
| 44 | + items = obj.__dict__.items() |
| 45 | + dict_str = ','.join([f'{str(k)}={prepare_object_to_dump(v)}' \ |
| 46 | + for k, v in items]) |
| 47 | + return (f"{type(obj).__name__}({dict_str})") |
| 48 | + else: |
| 49 | + # Hacky way to make sure we can serialize the object in JSON format |
| 50 | + try: |
| 51 | + return json.dumps(obj) |
| 52 | + except (TypeError, OverflowError): |
| 53 | + return repr(obj) |
| 54 | + |
| 55 | + |
| 56 | +def dump_engine_exception(config: VllmConfig, |
| 57 | + scheduler_output: SchedulerOutput, |
| 58 | + scheduler_stats: Optional[SchedulerStats]): |
| 59 | + # NOTE: ensure we can log extra info without risking raises |
| 60 | + # unexpected errors during logging |
| 61 | + with contextlib.suppress(BaseException): |
| 62 | + _dump_engine_exception(config, scheduler_output, scheduler_stats) |
| 63 | + |
| 64 | + |
| 65 | +def _dump_engine_exception(config: VllmConfig, |
| 66 | + scheduler_output: SchedulerOutput, |
| 67 | + scheduler_stats: Optional[SchedulerStats]): |
| 68 | + logger.error("Dumping input data") |
| 69 | + |
| 70 | + logger.error( |
| 71 | + "V1 LLM engine (v%s) with config: %s, ", |
| 72 | + VLLM_VERSION, |
| 73 | + config, |
| 74 | + ) |
| 75 | + |
| 76 | + try: |
| 77 | + dump_obj = prepare_object_to_dump(scheduler_output) |
| 78 | + logger.error("Dumping scheduler output for model execution:") |
| 79 | + logger.error(dump_obj) |
| 80 | + if scheduler_stats: |
| 81 | + logger.error(scheduler_stats) |
| 82 | + except BaseException as exception: |
| 83 | + logger.error("Error preparing object to dump") |
| 84 | + logger.error(repr(exception)) |
0 commit comments