|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | + |
| 3 | +import random |
| 4 | +from typing import Tuple |
| 5 | +from unittest.mock import patch |
| 6 | + |
| 7 | +import pytest |
| 8 | +import torch |
| 9 | + |
| 10 | +from vllm.model_executor.layers.logits_processor import LogitsProcessor |
| 11 | +from vllm.model_executor.sampling_metadata import SamplingMetadata |
| 12 | +from vllm.model_executor.utils import set_random_seed |
| 13 | +from vllm.sequence import SamplingParams, SequenceData, SequenceGroupMetadata |
| 14 | +from vllm.utils import is_pin_memory_available |
| 15 | + |
| 16 | + |
| 17 | +class MockLogitsProcessor(LogitsProcessor): |
| 18 | + |
| 19 | + def __init__(self, vocab_size: int, scale: float, |
| 20 | + fake_logits: torch.Tensor): |
| 21 | + super().__init__(vocab_size=vocab_size, scale=scale) |
| 22 | + self.fake_logits = fake_logits.clone() |
| 23 | + |
| 24 | + def forward(self, *args, **kwargs): |
| 25 | + with patch( |
| 26 | + "vllm.model_executor.layers.logits_processor._prune_hidden_states", |
| 27 | + lambda x, y: x |
| 28 | + ), patch( |
| 29 | + "vllm.model_executor.layers.logits_processor.LogitsProcessor._get_logits", |
| 30 | + lambda *args, **kwargs: self.fake_logits): |
| 31 | + return super().forward(*args, **kwargs) |
| 32 | + |
| 33 | + |
| 34 | +def _prepare_test( |
| 35 | + batch_size: int |
| 36 | +) -> Tuple[torch.Tensor, torch.Tensor, MockLogitsProcessor]: |
| 37 | + vocab_size = 32000 |
| 38 | + input_tensor = torch.rand((batch_size, 1024), dtype=torch.float16) |
| 39 | + fake_logits = torch.full((batch_size, vocab_size), |
| 40 | + 1e-2, |
| 41 | + dtype=input_tensor.dtype) |
| 42 | + logits_processor = MockLogitsProcessor(32000, 0.5, fake_logits) |
| 43 | + return input_tensor, fake_logits, logits_processor |
| 44 | + |
| 45 | + |
| 46 | +RANDOM_SEEDS = list(range(8)) |
| 47 | + |
| 48 | + |
| 49 | +@pytest.mark.parametrize("seed", RANDOM_SEEDS) |
| 50 | +def test_logits_processors(seed: int): |
| 51 | + import torch_xla.core.xla_model as xm |
| 52 | + |
| 53 | + device = xm.xla_device() |
| 54 | + set_random_seed(seed) |
| 55 | + torch.set_default_device("cpu") |
| 56 | + batch_size = random.randint(1, 256) |
| 57 | + input_tensor, fake_logits, logits_processor = _prepare_test(batch_size) |
| 58 | + |
| 59 | + # This sample logits processor gives infinite score to the i-th token, |
| 60 | + # where i is the length of the input sequence. |
| 61 | + # We therefore expect the output token sequence to be [0, 1, 2, ...] |
| 62 | + def pick_ith(token_ids, logits): |
| 63 | + logits[len(token_ids)] = float("inf") |
| 64 | + return logits |
| 65 | + |
| 66 | + seq_group_metadata_list = [] |
| 67 | + seq_lens = [] |
| 68 | + for i in range(batch_size): |
| 69 | + seq_group_metadata_list.append( |
| 70 | + SequenceGroupMetadata( |
| 71 | + request_id=f"test_{i}", |
| 72 | + is_prompt=True, |
| 73 | + seq_data={0: SequenceData.from_seqs([1, 2, 3])}, |
| 74 | + sampling_params=SamplingParams(temperature=0, |
| 75 | + logits_processors=[pick_ith]), |
| 76 | + block_tables={0: [1]}, |
| 77 | + )) |
| 78 | + seq_lens.append(seq_group_metadata_list[-1].seq_data[0].get_len()) |
| 79 | + |
| 80 | + sampling_metadata = SamplingMetadata.prepare( |
| 81 | + seq_group_metadata_list, |
| 82 | + seq_lens, |
| 83 | + query_lens=seq_lens, |
| 84 | + device=device, |
| 85 | + pin_memory=is_pin_memory_available()) |
| 86 | + logits_processor_output = logits_processor( |
| 87 | + lm_head=None, |
| 88 | + hidden_states=input_tensor, |
| 89 | + sampling_metadata=sampling_metadata) |
| 90 | + |
| 91 | + fake_logits *= logits_processor.scale |
| 92 | + torch.testing.assert_close(logits_processor_output[:, 1], |
| 93 | + fake_logits[:, 1], |
| 94 | + rtol=1e-4, |
| 95 | + atol=0.0) |
0 commit comments