Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Got KeyError 'layers.0.self_attn.qkv_proj.weight' when loading a partially quantized model. #11790

Closed
1 task done
jiangjiadi opened this issue Jan 7, 2025 · 0 comments · Fixed by #11795
Closed
1 task done
Labels
bug Something isn't working

Comments

@jiangjiadi
Copy link
Contributor

Your current environment

The output of `python collect_env.py`
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Alibaba Group Enterprise Linux Server 7.2 (Paladin) (x86_64)
GCC version: (GCC) 10.2.1 20200825 (Alibaba 10.2.1-3 2.17)
Clang version: Could not collect
CMake version: version 3.26.4
Libc version: glibc-2.32

Python version: 3.10.13 (main, Sep 11 2023, 13:44:35) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-4.9.151-015.ali3000.alios7.x86_64-x86_64-with-glibc2.32
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB

Nvidia driver version: 470.82.01
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                128
On-line CPU(s) list:   0-127
Thread(s) per core:    2
Core(s) per socket:    32
Socket(s):             2
NUMA node(s):          2
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 106
Model name:            Intel(R) Xeon(R) Platinum 8369B CPU @ 2.90GHz
Stepping:              6
CPU MHz:               3499.859
CPU max MHz:           3500.0000
CPU min MHz:           800.0000
BogoMIPS:              5800.00
Virtualization:        VT-x
L1d cache:             48K
L1i cache:             32K
L2 cache:              1280K
L3 cache:              49152K
NUMA node0 CPU(s):     0-31,64-95
NUMA node1 CPU(s):     32-63,96-127
Flags:                 fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch epb invpcid_single ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq pconfig flush_l1d arch_capabilities

Versions of relevant libraries:
[pip3] flake8==7.1.1
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1
[pip3] torchaudio==2.5.1
[pip3] torchvision==0.20.1
[pip3] transformers==4.47.1
[pip3] triton==3.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.5.1                    pypi_0    pypi
[conda] torchaudio                2.5.1                    pypi_0    pypi
[conda] torchvision               0.20.1                   pypi_0    pypi
[conda] transformers              4.47.1                   pypi_0    pypi
[conda] triton                    3.1.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.6.post2.dev351+g907ed572e.ant
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    GPU2    GPU3    CPU Affinity    NUMA Affinity
GPU0     X      NV12    NV12    NV12    0-31,64-95      0
GPU1    NV12     X      NV12    NV12    0-31,64-95      0
GPU2    NV12    NV12     X      NV12    0-31,64-95      0
GPU3    NV12    NV12    NV12     X      0-31,64-95      0

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=GPU-8ce10e36-43ae-e1d7-e72a-b66b5616b9d0,GPU-9644104d-b1fe-b825-39a2-2f8a132c3edc,GPU-0207bf46-daea-9a47-eee3-d576efc4fb01,GPU-82cf130e-3e8d-4203-7d37-daf5e04342ab
LD_LIBRARY_PATH=/opt/conda/lib/python3.10/site-packages/cv2/../../lib64::/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64:/opt/conda/lib/python3.10/site-packages/aistudio_common/reader/libs/:/opt/taobao/java/jre/lib/amd64/server/:/usr/local/cuda/lib64
NVIDIA_DRIVER_CAPABILITIES=all
NCCL_NVLS_ENABLE=0
CUDA_MODULE_LOADING=LAZY

Model Input Dumps

No response

🐛 Describe the bug

I used llmcompressor to create a partially quantized model, where the MLP layers are quantized but the attention layers are not. When I tried to load this model using vllm, I encountered a KeyError: 'layers.0.self_attn.qkv_proj.weight', as shown below.

image

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

1 participant