Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Load a custom model when VLLM_USE_V1=1 #12533

Closed
1 task done
akshay-loci opened this issue Jan 28, 2025 · 4 comments
Closed
1 task done

[Bug]: Load a custom model when VLLM_USE_V1=1 #12533

akshay-loci opened this issue Jan 28, 2025 · 4 comments
Assignees
Labels
bug Something isn't working

Comments

@akshay-loci
Copy link

akshay-loci commented Jan 28, 2025

Your current environment

INFO 01-28 23:42:17 __init__.py:183] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.16.3
Libc version: glibc-2.31

Python version: 3.10.10 (main, Mar 21 2023, 18:45:11) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1075-aws-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.1.105
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: GPU 0: NVIDIA L4
Nvidia driver version: 535.230.02
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Byte Order:                           Little Endian
Address sizes:                        48 bits physical, 48 bits virtual
CPU(s):                               16
On-line CPU(s) list:                  0-15
Thread(s) per core:                   2
Core(s) per socket:                   8
Socket(s):                            1
NUMA node(s):                         1
Vendor ID:                            AuthenticAMD
CPU family:                           25
Model:                                1
Model name:                           AMD EPYC 7R13 Processor
Stepping:                             1
CPU MHz:                              2649.998
BogoMIPS:                             5299.99
Hypervisor vendor:                    KVM
Virtualization type:                  full
L1d cache:                            256 KiB
L1i cache:                            256 KiB
L2 cache:                             4 MiB
L3 cache:                             32 MiB
NUMA node0 CPU(s):                    0-15
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Not affected
Vulnerability Spec rstack overflow:   Mitigation; safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; IBPB conditional; IBRS_FW; STIBP always-on; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid

Versions of relevant libraries:
[pip3] mypy==1.13.0
[pip3] mypy-boto3-sagemaker-runtime==1.35.15
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] open-clip-torch==2.24.0
[pip3] pytorch-lightning==2.2.4
[pip3] pyzmq==26.0.3
[pip3] sentence-transformers==2.7.0
[pip3] torch==2.5.1
[pip3] torch.redstone==0.0.6
[pip3] torchmetrics==1.4.0.post0
[pip3] torchvision==0.20.1
[pip3] transformers==4.46.2
[pip3] triton==3.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] open-clip-torch           2.24.0                   pypi_0    pypi
[conda] pytorch-lightning         2.2.4                    pypi_0    pypi
[conda] pyzmq                     26.0.3                   pypi_0    pypi
[conda] sentence-transformers     2.7.0                    pypi_0    pypi
[conda] torch                     2.5.1                    pypi_0    pypi
[conda] torch-redstone            0.0.6                    pypi_0    pypi
[conda] torchmetrics              1.4.0.post0              pypi_0    pypi
[conda] torchvision               0.20.1                   pypi_0    pypi
[conda] transformers              4.46.2                   pypi_0    pypi
[conda] triton                    3.1.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.7.0
vLLM Build Flags:
CUDA Archs: 5.0;6.0;7.0;7.5;8.0;8.6;9.0; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      0-15    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=all
NVIDIA_REQUIRE_CUDA=cuda>=12.1 brand=tesla,driver>=470,driver<471 brand=unknown,driver>=470,driver<471 brand=nvidia,driver>=470,driver<471 brand=nvidiartx,driver>=470,driver<471 brand=geforce,driver>=470,driver<471 brand=geforcertx,driver>=470,driver<471 brand=quadro,driver>=470,driver<471 brand=quadrortx,driver>=470,driver<471 brand=titan,driver>=470,driver<471 brand=titanrtx,driver>=470,driver<471 brand=tesla,driver>=525,driver<526 brand=unknown,driver>=525,driver<526 brand=nvidia,driver>=525,driver<526 brand=nvidiartx,driver>=525,driver<526 brand=geforce,driver>=525,driver<526 brand=geforcertx,driver>=525,driver<526 brand=quadro,driver>=525,driver<526 brand=quadrortx,driver>=525,driver<526 brand=titan,driver>=525,driver<526 brand=titanrtx,driver>=525,driver<526
TORCH_CUDA_ARCH_LIST=5.0;6.0;7.0;7.5;8.0;8.6;9.0
NCCL_VERSION=2.17.1-1
NVIDIA_DRIVER_CAPABILITIES=compute,graphics,utility,video
NVIDIA_PRODUCT_NAME=CUDA
NVIDIA_CUDA_END_OF_LIFE=1
CUDA_VERSION=12.1.0
CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda
NVIDIA_DISABLE_REQUIRE=true
LD_LIBRARY_PATH=/system/conda/miniconda3/envs/cloudspace/lib/python3.10/site-packages/cv2/../../lib64:/opt/amazon/efa/lib:/opt/aws-ofi-nccl/lib:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
MKL_THREADING_LAYER=GNU
NCCL_CUMEM_ENABLE=0
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

Model Input Dumps

No response

🐛 Describe the bug

I have a custom VisionLanguage model that I'm running using VLLM.

Before loading it I register it like this:
ModelRegistry.register_model("VoxelPhiForCausalLM", VoxelForCausalLM)

and then load it like so:

llm = LLM(
    model="/teamspace/studios/this_studio/voxel_phi3_siglip",
    max_model_len=2048,
    disable_sliding_window=True,
    limit_mm_per_prompt={"image": 3},
    trust_remote_code=True,
    gpu_memory_utilization=0.8,
)

With VLLM 0.7.0 if I don't set VLLM_USE_V1=1 then it loads and runs fine but when setting it to 1 I get this error
Model architectures ["VoxelPhiForCausalLM"] are not supported for now.

Is it possible to use V1 architecture with custom models?

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@akshay-loci akshay-loci added the bug Something isn't working label Jan 28, 2025
@mgoin
Copy link
Member

mgoin commented Jan 29, 2025

Can you share the full stacktrace? It is likely the real error is in the middle of the trace, and that message you shared is reporting the caught failure

@DarkLight1337
Copy link
Member

DarkLight1337 commented Jan 29, 2025

VLMs don't support V1 by default. Please update your model by walking through the model development docs again. If that still doesn't work, can you share your model implementation?

@akshay-loci
Copy link
Author

@mgoin @DarkLight1337 Looks like it was crashing because I was running it in a notebook, when running it from the command line it works fine. There's a very small difference in behavior though: When running generation without V1 enabled output.outputs[0].text does not contain the EOS token but with V1 enabled it does. I'm guessing this is not intentional?

@DarkLight1337
Copy link
Member

This is similar to the problem I reported in #12504. cc @ywang96

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

5 participants