Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Confuse with ray implements #4999

Open
vincent-pli opened this issue May 23, 2024 · 2 comments
Open

[Bug]: Confuse with ray implements #4999

vincent-pli opened this issue May 23, 2024 · 2 comments
Labels
bug Something isn't working stale

Comments

@vincent-pli
Copy link

Your current environment

Collecting environment information...
PyTorch version: 2.2.1+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.2
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-107-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.2.140
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA GeForce RTX 4090
GPU 1: NVIDIA GeForce RTX 4090

Nvidia driver version: 535.171.04
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      39 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             32
On-line CPU(s) list:                0-31
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Core(TM) i9-14900KF
CPU family:                         6
Model:                              183
Thread(s) per core:                 2
Core(s) per socket:                 24
Socket(s):                          1
Stepping:                           1
CPU max MHz:                        6000.0000
CPU min MHz:                        800.0000
BogoMIPS:                           6374.40
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr flush_l1d arch_capabilities
Virtualization:                     VT-x
L1d cache:                          896 KiB (24 instances)
L1i cache:                          1.3 MiB (24 instances)
L2 cache:                           32 MiB (12 instances)
L3 cache:                           36 MiB (1 instance)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-31
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] numpy==1.23.5
[pip3] nvidia-nccl-cu12==2.19.3
[pip3] torch==2.2.1
[pip3] torchaudio==2.2.1
[pip3] torchmetrics==1.2.1
[pip3] torchvision==0.17.1
[pip3] triton==2.2.0
[pip3] vllm-nccl-cu12==2.18.1.0.4.0
[conda] Could not collectROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.4.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	PHB	0-31	0		N/A
GPU1	PHB	 X 	0-31	0		N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

I dig into the implements of ray_gpu_executor.py and find such implements:
https://github.com/vllm-project/vllm/blob/ee3eea0a1b2c690557455d97074d8829d5a98320/vllm/executor/ray_gpu_executor.py#L112-123

seems, it will create number == parallel_config.world_size workers for model parallelism, but if worker's IP equal to driver's IP, this worker will be assign to driver_dummy_worker and will never append to normal worker list.

the driver_dummy_worker only act as driver not worker. so that's means one worker not invoke in model parallelism. I guess that's not expected.
can anyone make clarification, I guess I missing something, thanks

@vincent-pli vincent-pli added the bug Something isn't working label May 23, 2024
@vincent-pli
Copy link
Author

any design document or whatever could help to understand the original thought of this implementation? @zhuohan123 @Yard1 @njhill , thanks

Copy link

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!

@github-actions github-actions bot added the stale label Oct 26, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working stale
Projects
None yet
Development

No branches or pull requests

1 participant