Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Usage, bug]: vLLM Docker | ValueError: OpenTelemetry packages must be installed before configuring 'otlp_traces_endpoint' during vLLM startup #7679

Open
vipulgote1999 opened this issue Aug 20, 2024 · 6 comments
Labels
stale usage How to use vllm

Comments

@vipulgote1999
Copy link

vipulgote1999 commented Aug 20, 2024

Your current environment

binishb.ttl@vzneuronsr01:~/Vipul$ python3.10 collect_env_vllm.py
Collecting environment information...
WARNING 08-20 12:51:20 ray_utils.py:34] Failed to import Ray with ModuleNotFoundError("No module named 'ray.core'"). For distributed inference, please install Ray with `pip install ray pandas pyarrow`.
PyTorch version: 2.1.2+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.26.1
Libc version: glibc-2.35

Python version: 3.10.12 (main, Nov 20 2023, 15:14:05) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.15.0-113-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.5.119
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-PCIE-40GB
GPU 1: NVIDIA A100-PCIE-40GB

Nvidia driver version: 535.183.01
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_adv_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_cnn_train.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_infer.so.8.9.6
/usr/lib/x86_64-linux-gnu/libcudnn_ops_train.so.8.9.6
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             16
On-line CPU(s) list:                0-15
Vendor ID:                          GenuineIntel
Model name:                         Intel Xeon Processor (Cascadelake)
CPU family:                         6
Model:                              85
Thread(s) per core:                 1
Core(s) per socket:                 16
Socket(s):                          1
Stepping:                           5
BogoMIPS:                           5187.81
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single pti ssbd ibrs ibpb stibp fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 avx512vbmi umip pku ospke avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg avx512_vpopcntdq md_clear arch_capabilities
Hypervisor vendor:                  KVM
Virtualization type:                full
L1d cache:                          512 KiB (16 instances)
L1i cache:                          512 KiB (16 instances)
L2 cache:                           64 MiB (16 instances)
NUMA node(s):                       1
NUMA node0 CPU(s):                  0-15
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:        KVM: Mitigation: VMX unsupported
Vulnerability L1tf:                 Mitigation; PTE Inversion
Vulnerability Mds:                  Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:             Mitigation; PTI
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; IBRS; IBPB conditional; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Syscall hardening, KVM SW loop
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; Clear CPU buffers; SMT Host state unknown

Versions of relevant libraries:
[pip3] ctransformers==0.2.23
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.23.0
[pip3] numpyencoder==0.3.0
[pip3] nvidia-cublas-cu11==11.10.3.66
[pip3] nvidia-cublas-cu12==12.1.3.1
[pip3] nvidia-cuda-cupti-cu11==11.7.101
[pip3] nvidia-cuda-cupti-cu12==12.1.105
[pip3] nvidia-cuda-nvrtc-cu11==11.7.99
[pip3] nvidia-cuda-nvrtc-cu12==12.1.105
[pip3] nvidia-cuda-runtime-cu11==11.7.99
[pip3] nvidia-cuda-runtime-cu12==12.1.105
[pip3] nvidia-cudnn-cu11==8.5.0.96
[pip3] nvidia-cudnn-cu12==8.9.2.26
[pip3] nvidia-cufft-cu11==10.9.0.58
[pip3] nvidia-cufft-cu12==11.0.2.54
[pip3] nvidia-curand-cu11==10.2.10.91
[pip3] nvidia-curand-cu12==10.3.2.106
[pip3] nvidia-cusolver-cu11==11.4.0.1
[pip3] nvidia-cusolver-cu12==11.4.5.107
[pip3] nvidia-cusparse-cu11==11.7.4.91
[pip3] nvidia-cusparse-cu12==12.1.0.106
[pip3] nvidia-ml-py==12.535.133
[pip3] nvidia-nccl-cu11==2.14.3
[pip3] nvidia-nccl-cu12==2.18.1
[pip3] nvidia-nvjitlink-cu12==12.3.101
[pip3] nvidia-nvtx-cu11==11.7.91
[pip3] nvidia-nvtx-cu12==12.1.105
[pip3] pynvml==11.5.0
[pip3] pyzmq==25.1.1
[pip3] sentence-transformers==2.2.2
[pip3] torch==2.1.2
[pip3] torchdata==0.7.1
[pip3] torchtext==0.16.2
[pip3] torchvision==0.16.2
[pip3] transformers==4.36.2
[pip3] triton==2.1.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: N/A
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      PHB     0-15    0               N/A
GPU1    PHB      X      0-15    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

How would you like to use vllm

Description: When spinning up new docker container it is showing error for missing package.

Docker run command:
docker run -d --runtime nvidia --gpus all -v ~/Vipul/nltk_data:/home/user/nltk_data -v /home/binishb.ttl/Meta-Llama-3.1-8B-Instruct/:/root/Meta-Llama-3.1-8B-Instruct --env "HUGGING_FACE_HUB_TOKEN=xxxxxxxxxxxxxxxxx" -p 8514:8514 --ipc=host --env "CUDA_VISIBLE_DEVICES=1" --entrypoint "python3" vllm/vllm-openai:v0.5.4 -m vllm.entrypoints.openai.api_server --model /root/Meta-Llama-3.1-8B-Instruct --gpu-memory-utilization 0.9 --port 8514 --max-model-len 64000 --seed 42 --otlp-traces-endpoint "grpc://xxxxxxxxxx:4317" --enable-prefix-caching

Error:

While running the vLLM API server (v0.5.4) using Docker, the following error is encountered during initialization when trying to configure the otlp_traces_endpoint:
_ValueError: OpenTelemetry packages must be installed before configuring 'otlp_traces_endpoint'_

Docker logs

binishb.ttl@vzneuronsr01:~$ docker logs fc2b9c21e998
INFO 08-20 07:15:58 api_server.py:339] vLLM API server version 0.5.4
INFO 08-20 07:15:58 api_server.py:340] args: Namespace(host=None, port=8514, uvicorn_log_level='info', allow_credentials=False, allowed_origins=['*'], allowed_methods=['*'], allowed_headers=['*'], api_key=None, lora_modules=None, prompt_adapters=None, chat_template=None, response_role='assistant', ssl_keyfile=None, ssl_certfile=None, ssl_ca_certs=None, ssl_cert_reqs=0, root_path=None, middleware=[], return_tokens_as_token_ids=False, disable_frontend_multiprocessing=False, model='/root/Meta-Llama-3.1-8B-Instruct', tokenizer=None, skip_tokenizer_init=False, revision=None, code_revision=None, tokenizer_revision=None, tokenizer_mode='auto', trust_remote_code=False, download_dir=None, load_format='auto', dtype='auto', kv_cache_dtype='auto', quantization_param_path=None, max_model_len=64000, guided_decoding_backend='outlines', distributed_executor_backend=None, worker_use_ray=False, pipeline_parallel_size=1, tensor_parallel_size=1, max_parallel_loading_workers=None, ray_workers_use_nsight=False, block_size=16, enable_prefix_caching=True, disable_sliding_window=False, use_v2_block_manager=False, num_lookahead_slots=0, seed=42, swap_space=4, cpu_offload_gb=0, gpu_memory_utilization=0.9, num_gpu_blocks_override=None, max_num_batched_tokens=None, max_num_seqs=256, max_logprobs=20, disable_log_stats=False, quantization=None, rope_scaling=None, rope_theta=None, enforce_eager=False, max_context_len_to_capture=None, max_seq_len_to_capture=8192, disable_custom_all_reduce=False, tokenizer_pool_size=0, tokenizer_pool_type='ray', tokenizer_pool_extra_config=None, enable_lora=False, max_loras=1, max_lora_rank=16, lora_extra_vocab_size=256, lora_dtype='auto', long_lora_scaling_factors=None, max_cpu_loras=None, fully_sharded_loras=False, enable_prompt_adapter=False, max_prompt_adapters=1, max_prompt_adapter_token=0, device='auto', scheduler_delay_factor=0.0, enable_chunked_prefill=None, speculative_model=None, num_speculative_tokens=None, speculative_draft_tensor_parallel_size=None, speculative_max_model_len=None, speculative_disable_by_batch_size=None, ngram_prompt_lookup_max=None, ngram_prompt_lookup_min=None, spec_decoding_acceptance_method='rejection_sampler', typical_acceptance_sampler_posterior_threshold=None, typical_acceptance_sampler_posterior_alpha=None, disable_logprobs_during_spec_decoding=None, model_loader_extra_config=None, ignore_patterns=[], preemption_mode=None, served_model_name=None, qlora_adapter_name_or_path=None, otlp_traces_endpoint='grpc://xxxxxxxxxxx:4317', engine_use_ray=False, disable_log_requests=False, max_log_len=None)
WARNING 08-20 07:15:58 config.py:1454] Casting torch.bfloat16 to torch.float16.
WARNING 08-20 07:15:58 arg_utils.py:776] The model has a long context length (64000). This may cause OOM errors during the initial memory profiling phase, or result in low performance due to small KV cache space. Consider setting --max-model-len to a smaller value.
Process Process-1:
Traceback (most recent call last):
  File "/usr/lib/python3.10/multiprocessing/process.py", line 314, in _bootstrap
    self.run()
  File "/usr/lib/python3.10/multiprocessing/process.py", line 108, in run
    self._target(*self._args, **self._kwargs)
  File "/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/openai/rpc/server.py", line 217, in run_rpc_server
    server = AsyncEngineRPCServer(async_engine_args, usage_context, port)
  File "/usr/local/lib/python3.10/dist-packages/vllm/entrypoints/openai/rpc/server.py", line 25, in __init__
    self.engine = AsyncLLMEngine.from_engine_args(async_engine_args,
  File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 462, in from_engine_args
    engine_config = engine_args.create_engine_config()
  File "/usr/local/lib/python3.10/dist-packages/vllm/engine/arg_utils.py", line 852, in create_engine_config
    observability_config = ObservabilityConfig(
  File "<string>", line 4, in __init__
  File "/usr/local/lib/python3.10/dist-packages/vllm/config.py", line 1615, in __post_init__
    raise ValueError("OpenTelemetry packages must be installed before "
ValueError: OpenTelemetry packages must be installed before configuring 'otlp_traces_endpoint'

Potential Fix:

It seems like the issue arises because the required OpenTelemetry packages are missing. A possible solution could be either:

  1. Adding a check during startup to ensure the necessary packages are installed if the otlp_traces_endpoint is configured.
  2. Automatically disabling observability features if the packages are not available, and logging a warning instead of raising an error.
  3. Adding pip install opentelemetry-sdk opentelemetry-api opentelemetry-exporter-otlp opentelemetry-semantic-conventions-ai
@vipulgote1999 vipulgote1999 added the usage How to use vllm label Aug 20, 2024
@vipulgote1999 vipulgote1999 changed the title [Usage]: vLLM Docker | ValueError: OpenTelemetry packages must be installed before configuring 'otlp_traces_endpoint' during vLLM startup [Usage, bug]: vLLM Docker | ValueError: OpenTelemetry packages must be installed before configuring 'otlp_traces_endpoint' during vLLM startup Aug 20, 2024
@K-Mistele
Copy link
Contributor

seems like opentelemetry should just be added to requirements-common.txt, no?

@vipulgote1999
Copy link
Author

Yes

@K-Mistele
Copy link
Contributor

Yes

Have you create a PR for it already?

@vipulgote1999
Copy link
Author

No pr needs to be created

@cermeng
Copy link
Contributor

cermeng commented Sep 9, 2024

Otel usage doc: https://github.com/vllm-project/vllm/blob/main/examples/production_monitoring/Otel.md

According to #4687 (review), Otel packages are not included in official docker. You should install otel packages manually.

Copy link

github-actions bot commented Dec 9, 2024

This issue has been automatically marked as stale because it has not had any activity within 90 days. It will be automatically closed if no further activity occurs within 30 days. Leave a comment if you feel this issue should remain open. Thank you!

@github-actions github-actions bot added the stale label Dec 9, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
stale usage How to use vllm
Projects
None yet
Development

No branches or pull requests

3 participants