Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: Phi-3.5-MoE-Instruct on vLLM produces weird strings #8186

Closed
1 task done
chiwanpark opened this issue Sep 5, 2024 · 4 comments · Fixed by #8293
Closed
1 task done

[Bug]: Phi-3.5-MoE-Instruct on vLLM produces weird strings #8186

chiwanpark opened this issue Sep 5, 2024 · 4 comments · Fixed by #8293
Labels
bug Something isn't working

Comments

@chiwanpark
Copy link

Your current environment

The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.4.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.35

Python version: 3.10.12 (main, Jul 29 2024, 16:56:48) [GCC 11.4.0] (64-bit runtime)
Python platform: Linux-5.4.0-169-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.4.131
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 525.105.17
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.1.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.1.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      43 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             128
On-line CPU(s) list:                0-127
Vendor ID:                          AuthenticAMD
Model name:                         AMD EPYC 7513 32-Core Processor
CPU family:                         25
Model:                              1
Thread(s) per core:                 2
Core(s) per socket:                 32
Socket(s):                          2
Stepping:                           1
BogoMIPS:                           5190.32
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid aperfmperf pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb cat_l3 cdp_l3 invpcid_single hw_pstate ssbd mba ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 invpcid cqm rdt_a rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local clzero irperf xsaveerptr wbnoinvd arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold v_vmsave_vmload vgif umip pku ospke vaes vpclmulqdq rdpid overflow_recov succor smca sme sev sev_es
Virtualization:                     AMD-V
L1d cache:                          2 MiB (64 instances)
L1i cache:                          2 MiB (64 instances)
L2 cache:                           32 MiB (64 instances)
L3 cache:                           256 MiB (8 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-31,64-95
NUMA node1 CPU(s):                  32-63,96-127
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Retpolines, IBPB conditional, IBRS_FW, STIBP always-on, RSB filling, PBRSB-eIBRS Not affected
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] flake8==7.0.0
[pip3] flashinfer==0.1.6+cu121torch2.4
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.2.65
[pip3] nvidia-cuda-cupti-cu12==12.4.99
[pip3] nvidia-cuda-nvrtc-cu12==12.4.99
[pip3] nvidia-cuda-runtime-cu12==12.4.99
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.0.44
[pip3] nvidia-curand-cu12==10.3.5.119
[pip3] nvidia-cusolver-cu12==11.6.0.99
[pip3] nvidia-cusparse-cu12==12.3.0.142
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] nvidia-nvjitlink-cu12==12.4.99
[pip3] nvidia-nvtx-cu12==12.4.99
[pip3] pyzmq==26.1.1
[pip3] torch==2.4.0+cu124
[pip3] torchvision==0.19.0+cu124
[pip3] transformers==4.44.2
[pip3] triton==3.0.0
[pip3] zmq==0.0.0
[conda] Could not collect
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.5@d3311562fbe740a883e7f03f0b59620587cabb29
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	CPU Affinity	NUMA Affinity
GPU0	 X 	NV12	NV12	NV12	NV12	NV12	NV12	NV12	0-31,64-95	0
GPU1	NV12	 X 	NV12	NV12	NV12	NV12	NV12	NV12	0-31,64-95	0
GPU2	NV12	NV12	 X 	NV12	NV12	NV12	NV12	NV12	0-31,64-95	0
GPU3	NV12	NV12	NV12	 X 	NV12	NV12	NV12	NV12	0-31,64-95	0
GPU4	NV12	NV12	NV12	NV12	 X 	NV12	NV12	NV12	32-63,96-127	1
GPU5	NV12	NV12	NV12	NV12	NV12	 X 	NV12	NV12	32-63,96-127	1
GPU6	NV12	NV12	NV12	NV12	NV12	NV12	 X 	NV12	32-63,96-127	1
GPU7	NV12	NV12	NV12	NV12	NV12	NV12	NV12	 X 	32-63,96-127	1

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

🐛 Describe the bug

Hello, Phi-3.5-MoE-Instruct on vLLM produces weird strings. There is a similar report in the comment of #7729. Here is an example code to reproduce this issue:

from vllm import LLM, SamplingParams

prompts = ["<|user|>\nHello. Who are you?<|end|>\n<|assistant|>\n"]
sampling_params = SamplingParams(temperature=0.5, top_p=1.0)

llm = LLM(
    model="microsoft/Phi-3.5-MoE-instruct",
    dtype="bfloat16",
    trust_remote_code=True,
    tensor_parallel_size=8,
)
outputs = llm.generate(prompts, sampling_params)

for output in outputs:
    print(f"generated: {output.outputs[0].text}")

Here is the output of above code:

<some vLLM logs...>
generated:  or the or to and and the a and in a, and and,,

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@chiwanpark chiwanpark added the bug Something isn't working label Sep 5, 2024
@warlockedward
Copy link

I'm having the same problem with vllm version 0.5.5 as well!

@hunter-xue
Copy link

never stop and did not get any return message from API with version 0.6.0 while run Phi-3.5-MoE-Instruct inference on 8 H100 GPU

@wenxcs
Copy link
Contributor

wenxcs commented Sep 9, 2024

Let me see why

@wenxcs
Copy link
Contributor

wenxcs commented Sep 9, 2024

@chiwanpark I've found the root cause, some weight names used by PhiMoE should be changed to keep pace with vLLM commit.

#8293 This pr is the fix.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

Successfully merging a pull request may close this issue.

4 participants