Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Roadmap] vLLM Roadmap Q4 2024 #9006

Open
39 tasks
simon-mo opened this issue Oct 1, 2024 · 15 comments
Open
39 tasks

[Roadmap] vLLM Roadmap Q4 2024 #9006

simon-mo opened this issue Oct 1, 2024 · 15 comments

Comments

@simon-mo
Copy link
Collaborator

simon-mo commented Oct 1, 2024

This page is accessible via roadmap.vllm.ai

Themes.

As before, we categorized our roadmap into 6 broad themes: broad model support, wide hardware coverage, state of the art performance optimization, production level engine, strong OSS community, and extensible architectures. As we are seeing more

Broad Model Support

Help wanted:

Hardware Support

  • A feature matrix for all the hardware that vLLM supports, and their maturity level
  • Expanding features support on various hardwares
    • Fast PagedAttention and Chunked Prefill on Inferentia
    • Upstream of Intel Gaudi
    • Enhancements in TPU Support
    • Upstream enhancements in AMD MI300x
    • Performance enhancement and measurement for NVIDIA H200
    • New accelerator support: IBM Spyre

Help wanted:

  • Design for pluggable, out-of-tree hardware backend similar to PyTorch’s PrivateUse API
  • Prototype JAX support

Performance Optimizations

  • Turn on chunked prefill, prefix caching, speculative decoding by default
  • Optimizations for structured outputs
  • Fused GEMM/all-reduce leveraging Flux and AsyncTP
  • Enhancement and overhead-removal in offline LLM use cases.
  • Better kernels (FA3, FlashInfer, FlexAttention, Triton)
  • Native integration with torch.compile

Help wanted:

Production Features

  • KV cache offload to CPU and disk
  • Disaggregated Prefill
  • More control in prefix caching, and scheduler policies
  • Automated speculative decoding policy, see Dynamic Speculative Decoding

Help wanted

  • Support multiple models in the same server

OSS Community

  • Enhancements in performance benchmark: more realistic workload, more hardware backends (H200s)
  • Better developer documentations for getting started with contribution and research

Help wanted

  • Documentation enhancements in general (styling, UI, explainers, tutorials, examples, etc)

Extensible Architecture

  • Full support for torch.compile
  • vLLM Engine V2: Asynchronous Scheduling and Prefix Caching Centric Design (vLLM's V2 Engine Architecture #8779)
  • A generic memory manager supporting multi-modality, sparsity, and others

If any of the items you wanted is not on the roadmap, your suggestion and contribution is still welcomed! Please feel free to comment in this thread, open feature request, or create an RFC.

Historical Roadmap: #5805, #3861, #2681, #244

@simon-mo simon-mo changed the title [Roadmap]: vLLM Roadmap Q4 2024 [Roadmap] vLLM Roadmap Q4 2024 Oct 1, 2024
@simon-mo simon-mo pinned this issue Oct 1, 2024
@IsaacRe
Copy link

IsaacRe commented Oct 2, 2024

Support for KV cache compression

@ksjadeja
Copy link

ksjadeja commented Oct 4, 2024

Do we have plans to support #5540? We are having a production level use case and would really appreciate if someone can look into it for Q4 onwards.

@sylviayangyy
Copy link

sylviayangyy commented Oct 12, 2024

Hi, do we have any follow-up issue or Slack channel for the "KV cache offload to CPU and disk" task? Our team has previously explored some "KV cache offload" work based on vLLM, and we’d be happy to join any relevant discussion or contribute to the development if there's such chance~

Personally, also looking forward to know more about "More control in prefix caching, and scheduler policies" part😊.

@zeroorhero
Copy link

@simon-mo hi,regarding the topic “KV cache offload to CPU and disk”, I previously implemented a version that stores kv cache in a local file(#8018). Of course, I also did relevant abstractions and can add other media. Is there a slack channel for this? We can discuss the specific scheme. I am also quite interested in this function.

@simon-mo
Copy link
Collaborator Author

@sylviayangyy @zeroorhero thank you for your interests! Yes. @KuntaiDu has created a #feat-kvcache-offloading to discuss that.

@jeejeelee
Copy link
Contributor

Do we have plans to support #5540? We are having a production level use case and would really appreciate if someone can look into it for Q4 onwards.

It looks like LoRA is now supported. Are you encountering any issues?

@iiLaurens
Copy link

iiLaurens commented Oct 19, 2024

Any plans on improving guided decoding? There's a long standing RFC for it (#5423) and previous attempts have been made (e.g. #6273). Unfortunately seems to have been forgotten since.

In particular I'd love to see it become async (logit mask or biases can be calculated while GPU is working on calculating logits) and fast forwarding tokens when the next few tokens are deterministic.

@HuYunhai-Alex
Copy link

Whether there is an opportunity to participate in changes related to speculative decoding? I'm working on some of the practices that are going to help you

@devdev999
Copy link

Any plans on improving guided decoding? There's a long standing RFC for it (#5423) and previous attempts have been made (e.g. #6273). Unfortunately seems to have been forgotten since.

In particular I'd love to see it become async (logit mask or biases can be calculated while GPU is working on calculating logits) and fast forwarding tokens when the next few tokens are deterministic.

I second this. We are using vLLM to host our production inference servers and all of our downstream applications rely on guided json decoding to ensure that output is parsable. There is a significant performance difference between guided and non-guided decoding and any performance improvements would be helpful to increase throughput.

@Harsha-Nori
Copy link

Harsha-Nori commented Oct 22, 2024

Any plans on improving guided decoding? There's a long standing RFC for it (#5423) and previous attempts have been made (e.g. #6273). Unfortunately seems to have been forgotten since.
In particular I'd love to see it become async (logit mask or biases can be calculated while GPU is working on calculating logits) and fast forwarding tokens when the next few tokens are deterministic.

I second this. We are using vLLM to host our production inference servers and all of our downstream applications rely on guided json decoding to ensure that output is parsable. There is a significant performance difference between guided and non-guided decoding and any performance improvements would be helpful to increase throughput.

Hey, I maintain the guidance project and we worked on the first proposal in #6273 . Looks like vLLM has changed significantly since then, but if there is appetite for upgraded/more performant guided decoding work from the maintainers, we're happy to take another look and investigate a new PR. In particular, guidance (and our high performance rust implementation in llguidance already does async computations on CPU, calculates fast forward tokens, etc. and is typically accelerative for JSON schema.

@JC1DA @mmoskal

@ksjadeja
Copy link

Do we have plans to support #5540? We are having a production level use case and would really appreciate if someone can look into it for Q4 onwards.

It looks like LoRA is now supported. Are you encountering any issues?

Yes, if we look at the class in mixtral_quant.py, it does not have SupportsLora which means lora is not supported for quantized Mixtral. but for mixtral.py, we have SupportsLora included in MixtralForCausalLM. I have a LORA adapter trained which I want to use on top of mixtral-awq model without merging, directly as a hot swap. Let me know if you know a better way to tackle this situation

@jeejeelee
Copy link
Contributor

Do we have plans to support #5540? We are having a production level use case and would really appreciate if someone can look into it for Q4 onwards.

It looks like LoRA is now supported. Are you encountering any issues?

Yes, if we look at the class in mixtral_quant.py, it does not have SupportsLora which means lora is not supported for quantized Mixtral. but for mixtral.py, we have SupportsLora included in MixtralForCausalLM. I have a LORA adapter trained which I want to use on top of mixtral-awq model without merging, directly as a hot swap. Let me know if you know a better way to tackle this situation

I'm guessing you explicitly set the quantization, right? If so, you can try removing that argument and test it out, like the following script:

llm = LLM(
    model="Mixtral-8x7B-Instruct-v0.1-GPTQ",
    trust_remote_code=True,
    gpu_memory_utilization=0.6,
    enable_lora=True,
)

@dbuades
Copy link

dbuades commented Oct 29, 2024

Any plans on improving guided decoding? There's a long standing RFC for it (#5423) and previous attempts have been made (e.g. #6273). Unfortunately seems to have been forgotten since.
In particular I'd love to see it become async (logit mask or biases can be calculated while GPU is working on calculating logits) and fast forwarding tokens when the next few tokens are deterministic.

I second this. We are using vLLM to host our production inference servers and all of our downstream applications rely on guided json decoding to ensure that output is parsable. There is a significant performance difference between guided and non-guided decoding and any performance improvements would be helpful to increase throughput.

Hey, I maintain the guidance project and we worked on the first proposal in #6273 . Looks like vLLM has changed significantly since then, but if there is appetite for upgraded/more performant guided decoding work from the maintainers, we're happy to take another look and investigate a new PR. In particular, guidance (and our high performance rust implementation in llguidance already does async computations on CPU, calculates fast forward tokens, etc. and is typically accelerative for JSON schema.

@JC1DA @mmoskal

Improvements in guided generation performance would be very welcome. There is a helpful comment by @stas00 from last month with a nice summary of where things currently stand.

@ksjadeja
Copy link

ksjadeja commented Oct 30, 2024

Do we have plans to support #5540? We are having a production level use case and would really appreciate if someone can look into it for Q4 onwards.

It looks like LoRA is now supported. Are you encountering any issues?

Yes, if we look at the class in mixtral_quant.py, it does not have SupportsLora which means lora is not supported for quantized Mixtral. but for mixtral.py, we have SupportsLora included in MixtralForCausalLM. I have a LORA adapter trained which I want to use on top of mixtral-awq model without merging, directly as a hot swap. Let me know if you know a better way to tackle this situation

I'm guessing you explicitly set the quantization, right? If so, you can try removing that argument and test it out, like the following script:

llm = LLM(
    model="Mixtral-8x7B-Instruct-v0.1-GPTQ",
    trust_remote_code=True,
    gpu_memory_utilization=0.6,
    enable_lora=True,
)

Tried this, but does not work. I get the same error. Just mentioning that I use awq quantized model
[rank0]: ValueError: Model MixtralForCausalLM does not support LoRA, but LoRA is enabled. Support for this model may be added in the future. If this is important to you, please open an issue on github.

@jeejeelee
Copy link
Contributor

Do we have plans to support #5540? We are having a production level use case and would really appreciate if someone can look into it for Q4 onwards.

It looks like LoRA is now supported. Are you encountering any issues?

Yes, if we look at the class in mixtral_quant.py, it does not have SupportsLora which means lora is not supported for quantized Mixtral. but for mixtral.py, we have SupportsLora included in MixtralForCausalLM. I have a LORA adapter trained which I want to use on top of mixtral-awq model without merging, directly as a hot swap. Let me know if you know a better way to tackle this situation

I'm guessing you explicitly set the quantization, right? If so, you can try removing that argument and test it out, like the following script:

llm = LLM(
    model="Mixtral-8x7B-Instruct-v0.1-GPTQ",
    trust_remote_code=True,
    gpu_memory_utilization=0.6,
    enable_lora=True,
)

Tried this, but does not work. I get the same error. Just mentioning that I use awq quantized model [rank0]: ValueError: Model MixtralForCausalLM does not support LoRA, but LoRA is enabled. Support for this model may be added in the future. If this is important to you, please open an issue on github.

Which vllm version are you using?

According to the code in https://github.com/vllm-project/vllm/blob/v0.6.3.post1/vllm/model_executor/model_loader/utils.py#L30, both GPTQ and AWQ quantization methods should be compatible when using version 0.6.3post1

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests