-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
245 lines (213 loc) · 12.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
from torch.utils.data import DataLoader
from torch import nn
from pytorch_transformers import AdamW, WEIGHTS_NAME, WarmupLinearSchedule
import csv
import random
import numpy as np
import os
import logging
from fp16 import FP16_Module, FP16_Optimizer
from parallel import DataParallelModel, DataParallelCriterion
from collections import OrderedDict
from utils import *
from settings import args, TASK_DICT, init_logging, MODEL_CONFIG, MODEL_CLASS, SPECIAL_TOKENS, CONFIG_CLASS
from settings import TOKENIZER, SPECIAL_TOKEN_IDS, FILL_VAL, SAVE_NAME, FINAL_SAVE_NAME, TOKENS_WEIGHT, CONFIG_NAME
from scheduler import AnnealingLR
from regularizers import REG_TYPES, REG_TYPE_KEYS, Weight_Regularized_AdamW, Weight_Regularized_SGD
from torch.nn import CrossEntropyLoss
logger = logging.getLogger(__name__)
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def swap_name(org_name, seq_distil, ref1):
# swap_name(TASK_DICT[t]["train"], args.seq_distil, args.ref1)
if not seq_distil and not ref1:
return org_name
if seq_distil:
return org_name.replace("train", "distil")
if ref1:
return org_name.replace("train", "ref1")
def train(task_ids, model):
tasks = [args.tasks[task_id] for task_id in task_ids]
logger.info("start to train { task: %s, seq train type: %s }" % (tasks, args.seq_train_type))
model_dir = get_model_dir(tasks)
make_dir(model_dir)
#train_dataset = [(TASK_DICT[t]["train"] if not args.seq_distil else TASK_DICT[t]["train"].replace("train", "distil")) for t in tasks]
train_dataset = [swap_name(TASK_DICT[t]["train"], args.seq_distil, args.ref1) for t in tasks]
train_extra_data = []
if "lll" in args.seq_train_type and task_ids[0] > 0 and not args.skip_tasks:
prev_task = args.tasks[task_ids[0]-1]
with torch.no_grad():
create_extra_data(tasks[0], prev_task, model, train_extra_data)
elif "gem" in args.seq_train_type and task_ids[0] > 0:
get_real_data(tasks[0], train_extra_data, accum=False, encode=True)
args.memory_data.append(train_extra_data)
train_extra_data = []
logger.info('extra training data size: {}'.format(len(train_extra_data)))
if not model:
# which_model_to_load = model_dir if os.path.isfile(os.path.join(model_dir, FINAL_SAVE_NAME)) else args.model_name
model = MODEL_CLASS.from_pretrained(args.model_name).cuda()
model.resize_token_embeddings(len(TOKENIZER))
if not args.fp32:
model = FP16_Module(model)
gen_token = get_gen_token(tasks[0])
TOKENIZER.add_tokens([gen_token])
TOKENIZER.save_pretrained(model_dir)
SPECIAL_TOKENS[tasks[0]] = gen_token
SPECIAL_TOKEN_IDS[tasks[0]] = TOKENIZER.convert_tokens_to_ids(gen_token)
logger.info('gen token = {} , gen token id = {}'.format(gen_token, SPECIAL_TOKEN_IDS[tasks[0]]))
MODEL_CONFIG.vocab_size = len(TOKENIZER)
MODEL_CONFIG.to_json_file(os.path.join(model_dir,CONFIG_NAME))
global TOKENS_WEIGHT
if len(TOKENIZER) != TOKENS_WEIGHT.shape[0]:
TOKENS_WEIGHT = torch.cat((TOKENS_WEIGHT, torch.ones([1]).cuda()))
if args.skip_tasks and len(tasks) == 1:
logger.info("*********** skip task: {} ***********".format(tasks[0]))
if tasks[0] in args.skip_tasks:
if len(args.skip_tasks) == 1:
model_dir = get_model_dir(tasks)
model_path = os.path.join(model_dir, FINAL_SAVE_NAME)
config_path = os.path.join(model_dir,CONFIG_NAME)
model_config = CONFIG_CLASS.from_json_file(config_path)
model = MODEL_CLASS(model_config).cuda()
state_dict = torch.load(model_path)
model.load_state_dict(state_dict)
if not args.fp32:
model = FP16_Module(model)
if args.seq_train_type in REG_TYPE_KEYS:
logger.info("calulating reg_params ...")
train_qadata = QADataset(train_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]], train_extra_data)
max_train_batch_size = max(len(train_qadata) // args.min_n_steps, args.min_batch_size)
train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size)
parallel_model = DataParallelModel(WrapModel(model), args.device_ids)
regularizer = REG_TYPES[args.seq_train_type](model, parallel_model, [train_dataloader], tasks[0])
regularizer.task_start_do()
regularizer.task_end_do()
torch.save(model.state_dict(), os.path.join(model_dir, FINAL_SAVE_NAME))
logger.info("done reg_params!")
args.skip_tasks.remove(tasks[0])
return model
model.resize_token_embeddings(len(TOKENIZER) if not args.multitask_specific else len(TOKENIZER)+4)
if args.multitask_specific:
for i in range(4):
TOKENS_WEIGHT = torch.cat((TOKENS_WEIGHT, torch.ones([1]).cuda()))
if args.distil:
teacher_model = MODEL_CLASS.from_pretrained(args.model_name).cuda()
teacher_vocab_size = json.load(open("models/gpt2/lll/{task}_0.2/{task}/config.json".format(task=tasks[0])))['vocab_size']
teacher_model.resize_token_embeddings(teacher_vocab_size)
print("load teacher model from {}".format("models/gpt2/lll/{task}_0.2/{task}/model-finish".format(task=tasks[0])))
teacher_model.load_state_dict(torch.load("models/gpt2/lll/{task}_0.2/{task}/model-finish".format(task=tasks[0])))
if not args.fp32:
teacher_model = FP16_Module(teacher_model)
teacher_model.eval()
teacher_model = DataParallelModel(WrapModel(teacher_model), args.device_ids)
if not args.fp32: # again because resize_token_embeddings makes embedding layer fp32
model = FP16_Module(model)
parallel_model = DataParallelModel(WrapModel(model), args.device_ids)
train_qadata = QADataset(train_dataset, "train", SPECIAL_TOKEN_IDS[tasks[0]], train_extra_data)
max_train_batch_size = max(len(train_qadata) // args.min_n_steps, args.min_batch_size)
train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size)
if not args.unbound and args.seq_train_type not in ["multitask", "multilm"]:
#n_train_epochs = TASK_DICT[tasks[0]]["n_train_epochs"]
n_train_epochs = args.n_train_epochs[tasks[0]]
else:
n_train_epochs = args.n_train_epochs['_'.join(tasks)]
n_train_optimization_steps = len(train_qadata) * n_train_epochs
logger.info('len of train dataset: {} , max train batch size {} , num of opt steps: {}'.format(
len(train_qadata), max_train_batch_size, n_train_optimization_steps))
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if "gem" in args.seq_train_type:
model.task_id = task_ids[0]
if not hasattr(model, "grad_dims"):
model.grad_dims = []
for param in model.parameters():
model.grad_dims.append(param.data.numel())
if not hasattr(model, "grads"):
model.grads = torch.zeros(sum(model.grad_dims),len(args.tasks))
model.grads = model.grads.cuda()
if args.seq_train_type in REG_TYPE_KEYS:
optimizer = Weight_Regularized_AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
else:
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
if not args.fp32:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=None, dynamic_loss_scale=True,
dynamic_loss_args={'scale_window': 100, 'min_scale': 1, 'delayed_shift': 2})
scheduler = AnnealingLR(optimizer, start_lr=args.learning_rate, warmup_iter=int(args.n_warmup_ratio*len(train_qadata)),
num_iters=int(n_train_optimization_steps), decay_style=args.decay_style)
train_loss_fct = DataParallelCriterion(CrossEntropyLoss(ignore_index=FILL_VAL, weight=TOKENS_WEIGHT), args.device_ids)
if args.distil:
kd_loss_fct = DataParallelCriterion(nn.KLDivLoss(reduction="batchmean"), args.device_ids)
if args.seq_train_type in REG_TYPE_KEYS:
copy_train_dataloader = create_dataloader(train_qadata, "train", max_train_batch_size)
prev_task = args.tasks[task_ids[0]-1]
regularizer = REG_TYPES[args.seq_train_type](model, parallel_model, [copy_train_dataloader], tasks[0], prev_task)
regularizer.task_start_do()
tot_n_steps = 0
train_once = TrainStep(model, optimizer, scheduler)
if "gem" in args.seq_train_type and task_ids[0] != 0:
gem_step = GEMStep(model, parallel_model, train_loss_fct, optimizer)
model.train()
for ep in range(n_train_epochs):
cum_loss, cum_qa_loss, cum_lm_loss, cur_n_inputs = 0, 0, 0, 0
for n_steps, (_, _, cqa, _, Y, gen_X, gen_Y, is_extra) in enumerate(train_dataloader):
n_inputs = sum(_cqa.shape[0] for _cqa in cqa)
if args.multitask_specific:
for i in range(len(is_extra)):
gen_X[i][:, 0] += is_extra[i]
is_extra[i] = is_extra[i] * 0
for i in range(len(cqa)):
cqa[i] = (cqa[i].to(args.device_ids[i]),)
Y[i] = Y[i].to(args.device_ids[i])
gen_X[i] = (gen_X[i].to(args.device_ids[i]),)
gen_Y[i] = gen_Y[i].to(args.device_ids[i])
is_extra[i] = is_extra[i].to(args.device_ids[i])
if args.distil:
losses = get_distil_losses(teacher_model, parallel_model, cqa, Y, gen_X, gen_Y, is_extra, kd_loss_fct, train_loss_fct, args.temperature_kd, pad_idx=FILL_VAL)
else:
losses = get_losses(parallel_model, cqa, Y, gen_X, gen_Y, train_loss_fct)
loss = sum(losses)
if "gem" in args.seq_train_type and task_ids[0] != 0:
gem_step(task_ids[0])
train_once(loss, n_inputs)
qa_loss = losses[0].item() * n_inputs
lm_loss = losses[1].item() * n_inputs
cum_loss += (qa_loss + lm_loss)
cum_qa_loss += qa_loss
cum_lm_loss += lm_loss
cur_n_inputs += n_inputs
if (n_steps + 1 ) % args.logging_steps == 0:
logger.info('progress {:.3f} , lr {:.1E} , loss {:.3f} , qa loss {:.3f} , lm loss {:.3f} , avg batch size {:.1f}'.format(
ep + cur_n_inputs/len(train_qadata), scheduler.get_lr(), cum_loss/cur_n_inputs, cum_qa_loss/cur_n_inputs, cum_lm_loss/cur_n_inputs,
cur_n_inputs/(n_steps + 1)
))
torch.save(model.state_dict(), os.path.join(model_dir, SAVE_NAME+str(ep+1)))
tot_n_steps += (n_steps + 1)
logger.info('epoch {}/{} done , tot steps {} , lr {:.1E} , loss {:.2f} , qa loss {:.2f} , lm loss {:.2f} , avg batch size {:.1f}'.format(
ep+1, n_train_epochs, tot_n_steps, scheduler.get_lr(), cum_loss/cur_n_inputs, cum_qa_loss/cur_n_inputs, cum_lm_loss/cur_n_inputs, cur_n_inputs/(n_steps+1)
))
# task end do for reg
if args.seq_train_type in REG_TYPE_KEYS:
regularizer.task_end_do()
torch.save(model.state_dict(), os.path.join(model_dir, FINAL_SAVE_NAME))
return model
if __name__ == '__main__':
if not args.debug:
logging.getLogger("pytorch_transformers").setLevel(logging.WARNING)
logging.getLogger("pytorch_transformers.tokenization_utils").setLevel(logging.CRITICAL)
make_dir(args.model_dir_root)
init_logging(os.path.join(args.model_dir_root, 'log_train.txt'))
logger.info('args = {}'.format(str(args)))
model = None
if args.seq_train_type in ["multitask", "multilm"]:
model = train(list(range(len(args.tasks))), model)
else:
if args.unbound:
TASK_DICT = lll_unbound_setting(split_size=args.unbound)
for task_id in range(len(args.tasks)):
model = train([task_id], model)