forked from titu1994/neural-image-assessment
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflask_server.py
50 lines (40 loc) · 1.31 KB
/
flask_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from flask import Flask, render_template, request, abort
from utils.downloader import download_img,download_thumbnail
import sys
from evaluate import evaluate, mobilenet, nasnet
import os
import json
app = Flask(__name__)
fn = "temp/flask_test.jpg"
model = mobilenet()
model._make_predict_function()
#model2 = nasnet()
#model2._make_predict_function()
test = "teeest"
@app.route('/',methods=['GET'])
def index():
test = "teeest"
return render_template('index.html')
@app.route('/', methods=['POST'])
def predict():
_url = request.form['imgUrl']
print(_url)
try:
download_img(_url,fn)
#download_thumbnail(url,fn+"thumbnail.jpg")
_fn,_mean,_std = evaluate(model,[fn])[0]
print(_fn,_mean,_std)
except ValueError as err:
print(err)
abort(400)
return json.dumps({'error':str(err)})
return json.dumps({'filename':_fn,'mean': _mean, 'std':_std})#render_template('index.html', foo=False,test="123")
@app.route('/url=<path:url>')
def result(url):
download_img(url,fn)
download_thumbnail(url,fn+"thumbnail.jpg")
pred = evaluate(model,[fn,fn+"thumbnail.jpg"])
#pred2 = evaluate(model2,[fn,fn+"thumbnail.jpg"])
return 'Mobilenet: ' + str(pred) #+ '| Nasnet: ' + str(pred2)
if __name__ == '__main__':
app.run(debug=True)