-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-backward.tex
63 lines (51 loc) · 1.65 KB
/
chap-backward.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
\chapter{Backward Funcoids}
This is a preliminary partial draft.
Fix a family $\mathfrak{A}$ of posets.
\begin{defn}
Let $f$ be a staroid of filters $\mathfrak{F} (\mathfrak{A}_i)$ on boolean
lattices $\mathfrak{A}_i$. \emph{Backward funcoid} for the argument $k
\in \dom \mathfrak{A}$ of $f$ is the funcoid $\Back (f , k)$
defined by the formula (for every $X \in \mathfrak{A}_k$)
\[ \langle \Back (f , k) \rangle X = \setcond{ L \in \prod_{i \in
\dom \mathfrak{A}} \mathfrak{F} (\mathfrak{A}_i) }{
X \in \supfun{f}_k L } . \]
\end{defn}
\begin{prop}
Backward funcoid is properly defined.
\end{prop}
\begin{proof}
$\langle \Back (f , k) \rangle^{\ast} (X \sqcup Y) = \setcond{ L \in
\prod \mathfrak{A} }{ X \sqcup Y \in \langle f
\rangle_k L } = \setcond{ L \in \prod \mathfrak{A} }{
X \in \supfun{f}_k L \vee Y \in \supfun{f}_k L
} = \setcond{ L \in \prod \mathfrak{A} }{ X
\in \supfun{f}_k L } \cup \setcond{ L \in \prod \mathfrak{A}
}{ Y \in \supfun{f}_k L } = \langle
\Back (f , k) \rangle^{\ast} X \cup \langle \Back (f , k)
\rangle^{\ast} Y$.
\end{proof}
\begin{obvious}
Backward funcoid is co-complete.
\end{obvious}
\begin{prop}
If $f$ is a principal staroid then $\Back (f , k)$ is a complete
funcoid.
\end{prop}
\begin{proof}
??
\end{proof}
\begin{prop}
$f$ can be restored from $\Back (f , k)$ (for every fixed $k$).
\end{prop}
\begin{proof}
??
\end{proof}
\begin{prop}
$f \mapsto \Back (f , k)$ is an order isomorphism
$\mathsf{Strd}^{\mathfrak{A}} \rightarrow \mathsf{FCD} \left(
\mathfrak{A}_k , \mathsf{Strd}^{(\dom \mathfrak{A}) \setminus \{ k \}}
\right)$.
\end{prop}
\begin{proof}
??
\end{proof}