-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-common-top.tex
543 lines (464 loc) · 20.3 KB
/
chap-common-top.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
\chapter{\label{common-top}Common knowledge, part 2 (topology)}
In this chapter I describe basics of the theory known as \emph{general
topology}. Starting with the next chapter after this one I will describe
generalizations of customary objects of general topology described
in this chapter.
The reason why I've written this chapter is to show to the reader
kinds of objects which I generalize below in this book. For example,
funcoids and a generalization of proximity spaces, and funcoids are
a generalization of pretopologies. To understand the intuitive meaning
of funcoids one needs first know what are proximities and what are
pretopologies.
Having said that, customary topology is \emph{not} used in my definitions
and proofs below. It is just to feed your intuition.
\section{Metric spaces}
The theory of topological spaces started immediately with the definition
would be completely non-intuitive for the reader. It is the reason
why I first describe metric spaces and show that metric spaces give
rise for a topology (see below). Topological spaces are understandable
as a generalization of topologies induced by metric spaces.
\emph{Metric spaces} is a formal way to express the notion of \emph{distance}.
For example, there are distance $|x-y|$ between real numbers $x$
and $y$, distance between points of a plane, etc.
\begin{defn}
\index{space!metric}\index{distance}A \emph{metric space} is a set
$U$ together with a function $d:U\times U\rightarrow\mathbb{R}$
(\emph{distance} or \emph{metric}) such that for every $x,y,z\in U$:
\begin{enumerate}
\item $d(x,y)\ge0$;
\item $d(x,y)=0\Leftrightarrow x=y$;
\item $d(x,y)=d(y,x)$ (\emph{symmetry});
\item \index{inequality!triangle}$d(x,z)\le d(x,y)+d(y,z)$ (\emph{triangle
inequality}).
\end{enumerate}
\end{defn}
\begin{xca}
Show that the Euclid space $\mathbb{R}^{n}$ (with the standard distance)
is a metric space for every $n\in\mathbb{N}$.\end{xca}
\begin{defn}
\index{ball!open}\emph{Open ball} of \emph{radius} $r>0$ centered
at point $a\in U$ is the set
\[
B_{r}(a)=\setcond{x\in U}{d(a,x)<r}.
\]
\end{defn}
\begin{defn}
\index{ball!closed}\emph{Closed ball} of \emph{radius} $r>0$ centered
at point $a\in U$ is the set
\[
B_{r}[a]=\setcond{x\in U}{d(a,x)\le r}.
\]
\end{defn}
One example of use of metric spaces: \emph{Limit} of a sequence~$x$ in a metric space
can be defined as a point~$y$ in this space such that
\[ \forall \epsilon > 0 \exists N\in\mathbb{N} \forall n>N: d(x_n,y) < \epsilon. \]
\subsection{Open and closed sets}
\begin{defn}
\index{set!open!in metric space}A set $A$ in a metric space is called
\emph{open} when $\forall a\in A\exists r>0:B_{r}(a)\subseteq A$.
\end{defn}
\begin{defn}
\index{set!closed!in metric space}A set $A$ in a metric space is
closed when its complement $U\setminus A$ is open.
\end{defn}
\begin{xca}
Show that: closed intervals on real line are closed sets, open intervals are open sets.
\end{xca}
\begin{xca}
Show that open balls are open and closed balls are closed.
\end{xca}
\begin{defn}
\index{closure!in metric space}Closure $\cl(A)$ of a set $A$ in
a metric space is the set of points $y$ such that
\[
\forall\epsilon>0\exists a\in A:d(y,a)<\epsilon.
\]
\end{defn}
\begin{prop}
$\cl(A)\supseteq A$.\end{prop}
\begin{proof}
It follows from $d(a,a)=0<\epsilon$.\end{proof}
\begin{xca}
Prove $\cl(A\cup B)=\cl(A)\cup\cl(B)$ for every subsets $A$ and
$B$ of a metric space.
\end{xca}
\section{Pretopological spaces}
\emph{Pretopological space} can be defined in two equivalent ways:
a \emph{neighborhood system} or a \emph{preclosure operator}. To be
more clear I will call \emph{pretopological space} only the first
(neighborhood system) and the second call a \emph{preclosure space}.
\begin{defn}
\index{space!pre-topological}\index{pretopology}\emph{Pretopological
space} is a set $U$ together with a filter $\Delta(x)$ on \emph{$U$}
for every $x\in U$, such that $\uparrow^{U}\{x\}\sqsubseteq\Delta(x)$.
$\Delta$~is called a \emph{pretopology} on $U$.
Elements of~$\up\Delta(x)$ are called \emph{neighborhoods} of point~$x$.
\end{defn}
\begin{defn}
\index{preclosure}\emph{Preclosure} on a set $U$ is a unary operation
$\cl$ on $\subsets U$ such that for every $A,B\in\subsets U$:
\begin{enumerate}
\item $\cl(\emptyset)=\emptyset$;
\item $\cl(A)\supseteq A$;
\item $\cl(A\cup B)=\cl(A)\cup\cl(B)$.
\end{enumerate}
\index{space!preclosure}I call a preclosure together with a set $U$
as \emph{preclosure space}.
\end{defn}
\begin{thm}
\label{pretop-bij}Small pretopological spaces and small preclosure
spaces bijectively correspond to each other by the formulas:
\begin{gather}
\cl(A)=\setcond{x\in U}{A\in\corestar\Delta(x)};\label{pt-cl}\\
\up\Delta(x)=\setcond{A\in\subsets U}{x\notin\cl(U\setminus A)}.\label{pt-neigh}
\end{gather}
\end{thm}
\begin{proof}
First let's prove that $\cl$ defined by formula (\ref{pt-cl}) is
really a preclosure.
$\cl(\emptyset)=\emptyset$ is obvious. If $x\in A$ then $A\in\corestar\Delta(x)$
and so $\cl(A)\supseteq A$. $\cl(A\cup B)=\setcond{x\in U}{A\cup B\in\corestar\Delta(x)}=\setcond{x\in U}{A\in\corestar\Delta(x)\lor B\in\corestar\Delta(x)}=\cl(A)\cup\cl(B)$.
So, it is really a preclosure.
Next let's prove that $\Delta$ defined by formula (\ref{pt-neigh})
is a pretopology. That $\up\Delta(x)$ is an upper set is obvious.
Let $A,B\in\up\Delta(x)$. Then $x\notin\cl(U\setminus A)\land x\notin\cl(U\setminus B)$;
$x\notin\cl(U\setminus A)\cup\cl(U\setminus B)=\cl((U\setminus A)\cup(U\setminus B))=\cl(U\setminus(A\cap B))$;
$A\cap B\in\up\Delta(x)$. We have proved that $\Delta(x)$ is a filter
object.
Let's prove $\uparrow^{U}\{x\}\sqsubseteq\Delta(x)$. If $A\in\up\Delta(x)$
then $x\notin\cl(U\setminus A)$ and consequently $x\notin U\setminus A$;
$x\in A$; $A\in\up\uparrow^{U}\{x\}$. So $\uparrow^{U}\{x\}\sqsubseteq\Delta(x)$
and thus $\Delta$ is a pretopology.
It is left to prove that the functions defined by the above formulas
are mutually inverse.
Let $\cl_{0}$ be a preclosure, let $\Delta$ be the pretopology induced
by $\cl_{0}$ by the formula (\ref{pt-neigh}), let $\cl_{1}$ be
the preclosure induced by $\Delta$ by the formula (\ref{pt-cl}).
Let's prove $\cl_{1}=\cl_{0}$. Really,
\begin{align*}
x\in\cl_{1}(A) & \Leftrightarrow\\
\Delta(x)\nasymp\uparrow^{U}A & \Leftrightarrow\\
\forall X\in\up\Delta(x):X\cap A\ne\emptyset & \Leftrightarrow\\
\forall X\in\subsets U:(x\notin\cl_{0}(U\setminus X)\Rightarrow X\cap A\ne\emptyset) & \Leftrightarrow\\
\forall X'\in\subsets U:(x\notin\cl_{0}(X')\Rightarrow A\setminus X'\ne\emptyset) & \Leftrightarrow\\
\forall X'\in\subsets U:(A\setminus X'=\emptyset\Rightarrow x\in\cl_{0}(X')) & \Leftrightarrow\\
\forall X'\in\subsets U:(A\subseteq X'\Rightarrow x\in\cl_{0}(X')) & \Leftrightarrow\\
x\in\cl_{0}(A).
\end{align*}
So $\cl_{1}(A)=\cl_{0}(A)$.
Let now $\Delta_{0}$ be a pretopology, let $\cl$ be the closure
induced by $\Delta_{0}$ by the formula (\ref{pt-cl}), let $\Delta_{1}$
be the pretopology induced by $\cl$ by the formula (\ref{pt-neigh}).
Really
\begin{align*}
A\in\up\Delta_{1}(x) & \Leftrightarrow\\
x\notin\cl(U\setminus A) & \Leftrightarrow\\
\Delta_{0}(x)\asymp\uparrow^{U}(U\setminus A) & \Leftrightarrow\text{(proposition \ref{bool-compl})}\\
\uparrow^{U}A\sqsupseteq\Delta_{0}(x) & \Leftrightarrow\\
A\in\up\Delta_{0}(x).
\end{align*}
So $\Delta_{1}(x)=\Delta_{0}(x)$.
That these functions are mutually inverse, is now proved.
\end{proof}
\subsection{Pretopology induced by a metric}
\index{pre-topology!induced by metric}Every metric space induces
a pretopology by the formula:
\[
\Delta(x)=\bigsqcap^{\mathscr{F}U}\setcond{B_{r}(x)}{r\in\mathbb{R},r>0}.
\]
\begin{xca}
Show that it is a pretopology.\end{xca}
\begin{prop}
The preclosure corresponding to this pretopology is the same as the
preclosure of the metric space.\end{prop}
\begin{proof}
I denote the preclosure of the metric space as $\cl_{M}$ and the
preclosure corresponding to our pretopology as $\cl_{P}$. We need
to show $\cl_{P}=\cl_{M}$. Really:
\begin{align*}
\cl_{P}(A) & =\\
\setcond{x\in U}{A\in\corestar\Delta(x)} & =\\
\setcond{x\in U}{\forall\epsilon>0:B_{\epsilon}(x)\nasymp A} & =\\
\setcond{y\in U}{\forall\epsilon>0\exists a\in A:d(y,a)<\epsilon} & =\\
\cl_{M}(A)
\end{align*}
for every set $A\in\subsets U$.
\end{proof}
\section{\label{sec-top}Topological spaces}
\begin{prop}
For the set of open sets of a metric space $(U,d)$ it holds:
\begin{enumerate}
\item Union of any (possibly infinite) number of open sets is an open set.
\item Intersection of a finite number of open sets is an open set.
\item $U$ is an open set.
\end{enumerate}
\end{prop}
\begin{proof}
Let $S$ be a set of open sets. Let $a\in\bigcup S$. Then there exists
$A\in S$ such that $a\in A$. Because $A$ is open we have $B_{r}(a)\subseteq A$
for some $r>0$. Consequently $B_{r}(a)\subseteq\bigcup S$ that is
$\bigcup S$ is open.
Let $A_{0},\dots,A_{n}$ be open sets. Let $a\in A_{0}\cap\dots\cap A_{n}$
for some $n\in\mathbb{N}$. Then there exist $r_{i}$ such that $B_{r_{i}}(a)\subseteq A_{i}$.
So $B_{r}(a)\subseteq A_{0}\cap\dots\cap A_{n}$ for $r=\min\{r_{0},\dots,r_{n}\}$
that is $A_{0}\cap\dots\cap A_{n}$ is open.
That $U$ is an open set is obvious.
\end{proof}
The above proposition suggests the following definition:
\begin{defn}
\index{topology}A \emph{topology} on a set $U$ is a collection~$\mathcal{O}$
(called the set of \emph{open sets}) of subsets of~$U$ such that:\index{set!open}
\begin{enumerate}
\item Union of any (possibly infinite) number of open sets is an open set.
\item Intersection of a finite number of open sets is an open set.
\item $U$ is an open set.
\end{enumerate}
\index{space!topological}The pair $(U,\mathcal{O})$ is called a
\emph{topological space}.\end{defn}
\begin{rem}
From the above it is clear that every metric induces a topology.\end{rem}
\begin{prop}
Empty set is always open.\end{prop}
\begin{proof}
Empty set is union of an empty set.\end{proof}
\begin{defn}
\index{set!closed}A \emph{closed set} is a complement of an open
set.
\end{defn}
Topology can be equivalently expresses in terms of closed sets:
A \emph{topology} on a set $U$ is a collection (called the set of
\emph{closed sets}) of subsets of $U$ such that:
\begin{enumerate}
\item Intersection of any (possibly infinite) number of closed sets is a
closed set.
\item Union of a finite number of closed sets is a closed set.
\item $\emptyset$ is a closed set.\end{enumerate}
\begin{xca}
Show that the definitions using open and closed sets are equivalent.
\end{xca}
\subsection{Relationships between pretopologies and topologies}
\subsubsection{Topological space induced by preclosure space}
\index{space!topological!induced by preclosure}Having a preclosure
space $(U,\cl)$ we define a topological space whose closed sets are
such sets $A\in\subsets U$ that $\cl(A)=A$.
\begin{prop}
This really defines a topology.\end{prop}
\begin{proof}
Let $S$ be a set of closed sets. First, we need to prove that $\bigcap S$
is a closed set. We have $\cl\left(\bigcap S\right)\subseteq A$ for
every $A\in S$. Thus $\cl\left(\bigcap S\right)\subseteq\bigcap S$
and consequently $\cl\left(\bigcap S\right)=\bigcap S$. So $\bigcap S$
is a closed set.
Let now $A_{0},\dots,A_{n}$ be closed sets, then
\[
\cl(A_{0}\cup\dots\cup A_{n})=\cl(A_{0})\cup\dots\cup\cl(A_{n})=A_{0}\cup\dots\cup A_{n}
\]
that is $A_{0}\cup\dots\cup A_{n}$ is a closed set.
That $\emptyset$ is a closed set is obvious.
\end{proof}
Having a pretopological space $(U,\Delta)$ we define a topological
space whose open sets are
\[
\setcond{X\in\subsets U}{\forall x\in X:X\in\up\Delta(x)}.
\]
\begin{prop}
This really defines a topology.\end{prop}
\begin{proof}
Let set $S\subseteq\setcond{X\in\subsets U}{\forall x\in X:X\in\up\Delta(x)}$.
Then $\forall X\in S\forall x\in X:X\in\up\Delta(x)$. Thus
\[
\forall x\in\bigcup S\exists X\in S:X\in\up\Delta(x)
\]
and so $\forall x\in\bigcup S:\bigcup S\in\up\Delta(x)$. So $\bigcup S$
is an open set.
Let now $A_{0},\dots,A_{n}\in\setcond{X\in\subsets U}{\forall x\in X:X\in\up\Delta(x)}$
for $n\in\mathbb{N}$. Then $\forall x\in A_{i}:A_{i}\in\up\Delta(x)$
and so
\[
\forall x\in A_{0}\cap\dots\cap A_{n}:A_{i}\in\up\Delta(x);
\]
thus $\forall x\in A_{0}\cap\dots\cap A_{n}:A_{0}\cap\dots\cap A_{n}\in\up\Delta(x)$.
So $A_{0}\cap\dots\cap A_{n}\in\setcond{X\in\subsets U}{\forall x\in X:X\in\up\Delta(x)}$.
That $U$ is an open set is obvious.\end{proof}
\begin{prop}\label{top-two}
Topology $\tau$ defined by a pretopology and topology $\rho$ defined
by the corresponding preclosure, are the same.\end{prop}
\begin{proof}
Let $A\in\subsets U$.
$A\text{ is \ensuremath{\rho}-closed}\Leftrightarrow\cl(A)=A\Leftrightarrow\cl(A)\subseteq A\Leftrightarrow\forall x\in U:(A\in\corestar\Delta(x)\Rightarrow x\in A)$;
\begin{align*}
A\text{ is \ensuremath{\tau}-open} & \Leftrightarrow\\
\forall x\in A:A\in\up\Delta(x) & \Leftrightarrow\\
\forall x\in U:(x\in A\Rightarrow A\in\up\Delta(x)) & \Leftrightarrow\\
\forall x\in U:(x\notin U\setminus A\Rightarrow U\setminus A\notin\corestar\Delta(x)).
\end{align*}
So $\rho$-closed and $\tau$-open sets are complements of each other. It
follows $\rho=\tau$.
\end{proof}
\subsubsection{Preclosure space induced by topological space}
\index{space!preclosure!induced by topology}We define a preclosure
and a pretopology induced by a topology and then show these two are
equivalent.
Having a topological space we define a preclosure space by the formula
\[
\cl(A)=\bigcap\setcond{X\in\subsets U}{X\text{ is a closed set},X\supseteq A}.
\]
\begin{prop}
It is really a preclosure.\end{prop}
\begin{proof}
$\cl(\emptyset)=\emptyset$ because $\emptyset$ is a closed set.
$\cl(A)\supseteq A$ is obvious.
\begin{align*}
\cl(A\cup B) & =\\
\bigcap\setcond{X\in\subsets U}{X\text{ is a closed set},X\supseteq A\cup B} & =\\
\bigcap\setcond{X_{1}\cup X_{2}}{X_{1},X_{2}\in\subsets U\text{ are closed sets},X_{1}\supseteq A,X_{2}\supseteq B} & =\\
\bigcap\setcond{X_{1}\in\subsets U}{X_{1}\text{ is a closed set},X_{1}\supseteq A}\cup\bigcap\setcond{X_{2}\in\subsets U}{X_{2}\text{ is a closed set},X_{2}\supseteq B} & =\\
\cl(A)\cup\cl(B).
\end{align*}
Thus $\cl$ is a preclosure.
\end{proof}
Or: $\Delta(x)=\bigsqcap^{\mathscr{F}}\setcond{X\in\mathcal{O}}{x\in X}$.
It is trivially a pretopology (used the fact that $U\in\mathcal{O}$).
\begin{prop}
The preclosure and the pretopology defined in this section above correspond
to each other (by the formulas from theorem \ref{pretop-bij}).\end{prop}
\begin{proof}
We need to prove $\cl(A)=\setcond{x\in U}{\Delta(x)\nasymp\uparrow^{U}A}$,
that is
\[
\bigcap\setcond{X\in\subsets U}{X\text{ is a closed set},X\supseteq A}=\setcond{x\in U}{\bigsqcap^{\mathscr{F}U}\setcond{X\in\mathcal{O}}{x\in X}\nasymp\uparrow^{U}A}.
\]
Equivalently transforming it, we get:
\begin{align*}
\bigcap\setcond{X\in\subsets U}{X\text{ is a closed set},X\supseteq A} & =\setcond{x\in U}{\forall X\in\mathcal{O}:(x\in X\Rightarrow\uparrow^{U}X\nasymp\uparrow^{U}A)};\\
\bigcap\setcond{X\in\subsets U}{X\text{ is a closed set},X\supseteq A} & =\setcond{x\in U}{\forall X\in\mathcal{O}:(x\in X\Rightarrow X\nasymp A)}.
\end{align*}
We have
\begin{align*}
x\in\bigcap\setcond{X\in\subsets U}{X\text{ is a closed set},X\supseteq A} & \Leftrightarrow\\
\forall X\in\subsets U:(X\text{ is a closed set}\land X\supseteq A\Rightarrow x\in X) & \Leftrightarrow\\
\forall X'\in\mathcal{O}:(U\setminus X'\supseteq A\Rightarrow x\in U\setminus X') & \Leftrightarrow\\
\forall X'\in\mathcal{O}:(X'\asymp A\Rightarrow x\notin X') & \Leftrightarrow\\
\forall X\in\mathcal{O}:(x\in X\Rightarrow X\nasymp A).
\end{align*}
So our equivalence holds.\end{proof}
\begin{prop}
If $\tau$ is the topology induced by pretopology $\pi$, in turn
induced by topology $\rho$, then $\tau=\rho$.\end{prop}
\begin{proof}
The set of closed sets of $\tau$ is
\begin{align*}
\setcond{A\in\subsets U}{\cl_{\pi}(A)=A} & =\\
\setcond{A\in\subsets U}{\bigcap\setcond{X\in\subsets U}{X\text{ is a closed set in }\rho,X\supseteq A}=A} & =\\
\setcond{A\in\subsets U}{A\text{ is a closed set in }\rho}
\end{align*}
(taken into account that intersecting closed sets is a closed set).\end{proof}
\begin{defn}
\index{closure!Kuratowski}Idempotent closures are called \emph{Kuratowski
closures}.\end{defn}
\begin{thm}
The above defined correspondences between topologies and pretopologies,
restricted to Kuratowski closures, is a bijection.\end{thm}
\begin{proof}
Taking into account the above proposition, it's enough to prove that:
If $\tau$ is the pretopology induced by topology $\pi$, in turn
induced by a Kuratowski closure $\rho$, then $\tau=\rho$.
\begin{align*}
\cl_{\tau}(A) & =\\
\bigcap\setcond{X\in\subsets U}{X\text{ is a closed set in }\pi,X\supseteq A} & =\\
\bigcap\setcond{X\in\subsets U}{\cl_{\rho}(X)=X,X\supseteq A} & =\\
\bigcap\setcond{\cl_{\rho}(X)}{X\in\subsets U,\cl_{\rho}(X)=X,X\supseteq\cl_{\rho}(A)} & =\\
\bigcap\setcond{\cl_{\rho}(\cl_{\rho}(X))}{X=A} & =\\
\cl_{\rho}(\cl_{\rho}(A)) & =\\
\cl_{\rho}(A).
\end{align*}
\end{proof}
\subsubsection{Topology induced by a metric}
\begin{defn}
Every metric space induces a topology in this way: A set $X$ is open
iff
\[
\forall x\in X\exists\epsilon>0:B_{r}(x)\subseteq X.
\]
\end{defn}
\begin{xca}
Prove it is really a topology and this topology is the same as the
topology, induced by the pretopology, in turn induced by our metric
space.
\end{xca}
\section{\label{sec-prox}Proximity spaces}
Let $(U,d)$ be metric space. We will define \emph{distance} between
sets $A,B\in\subsets U$ by the formula
\[
d(A,B)=\inf\setcond{d(a,b)}{a\in A,b\in B}.
\]
(Here ``$\inf$'' denotes infimum on the real line.)
\begin{defn}
Sets $A,B\in\subsets U$ are \emph{near} (denoted $A\mathrel\delta B$)
iff $d(A,B)=0$.
\end{defn}
$\delta$ defined in this way (for a metric space) is an example of
proximity as defined below.
\begin{defn}
\label{prox}\index{proximity}\index{space!proximity}A \emph{proximity
space} is a set $(U,\delta)$ conforming to the following axioms (for
every $A,B,C\in\subsets U$):
\begin{enumerate}
\item $A\cap B\ne\emptyset\Rightarrow A\mathrel\delta B$;
\item if $A\mathrel\delta B$ then $A\ne\emptyset$ and $B\ne\emptyset$;
\item $A\mathrel\delta B\Rightarrow B\mathrel\delta A$ (\emph{symmetry});
\item $(A\cup B)\mathrel\delta C\Leftrightarrow A\mathrel\delta C\lor B\mathrel\delta C$;
\item $C\mathrel\delta(A\cup B)\Leftrightarrow C\mathrel\delta A\lor C\mathrel\delta B$;
\item \label{prox-last}$A\mathrel{\bar{\delta}}B$ implies existence of
$P,Q\in\subsets U$ with $A\mathrel{\bar{\delta}}P$, $B\mathrel{\bar{\delta}}Q$
and $P\cup Q=U$.
\end{enumerate}
\end{defn}
\begin{xca}
Show that proximity generated by a metric space is really a proximity
(conforms to the above axioms).\end{xca}
\begin{defn}
\index{quasi-proximity}\emph{Quasi-proximity} is defined as the above
but without the symmetry axiom.
\end{defn}
\begin{defn}
Closure is generated by a proximity by the following formula:
\[
\cl(A)=\setcond{a\in U}{\{a\}\mathrel\delta A}.
\]
\end{defn}
\begin{prop}
Every closure generated by a proximity is a Kuratowski closure.\end{prop}
\begin{proof}
First prove it is a preclosure. $\cl(\emptyset)=\emptyset$ is obvious.
$\cl(A)\supseteq A$ is obvious.
\begin{align*}
\cl(A\cup B) & =\\
\setcond{a\in U}{\{a\}\mathrel\delta A\cup B} & =\\
\setcond{a\in U}{\{a\}\mathrel\delta A\lor\{a\}\mathrel\delta B} & =\\
\setcond{a\in U}{\{a\}\mathrel\delta A}\cup\setcond{a\in U}{\{a\}\mathrel\delta B} & =\\
\cl(A)\cup\cl(B).
\end{align*}
It is remained to prove that $\cl$ is idempotent, that is $\cl(\cl(A))=\cl(A)$.
It is enough to show $\cl(\cl(A))\subseteq\cl(A)$ that is if $x\notin\cl(A)$
then $x\notin\cl(\cl(A))$.
If $x\notin\cl(A)$ then $\{x\}\mathrel{\bar{\delta}}A$. So there
are $P,Q\in\subsets U$ such that $\{x\}\mathrel{\bar{\delta}}P$,
$A\mathrel{\bar{\delta}}Q$, $P\cup Q=U$. Then $U\setminus Q\subseteq P$,
so $\{x\}\mathrel{\bar{\delta}}U\setminus Q$ and hence $x\in Q$.
Hence $U\setminus\cl(A)\subseteq Q$, and so $\cl(A)\subseteq U\setminus Q\subseteq P$.
Consequently $\{x\}\mathrel{\bar{\delta}}\cl(A)$ and hence $x\notin\cl(\cl(A))$.
\end{proof}
\section{Definition of uniform spaces}
Here I will present the traditional definition of uniform spaces.
Below in the chapter about reloids I will present a shortened and
more algebraic (however a little less elementary) definition of uniform
spaces.
\begin{defn}
\emph{Uniform space} is a pair $(U,D)$ of a set~$U$ and filter~$D\in\mathfrak{F}(U\times U)$
(called \emph{uniformity} or the set of \emph{entourages}) such that:
\begin{enumerate}
\item If $F\in D$ then $\id_{U}\subseteq F$.
\item If $F\in D$ then there exists $G\in D$ such that $G\circ G\subseteq F$.
\item If $F\in D$ then $F^{-1}\in D$.\end{enumerate}
\end{defn}