-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-common.tex
1792 lines (1576 loc) · 67.4 KB
/
chap-common.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
%
\chapter{\label{chap-common}Common knowledge, part 1}
In this chapter we will consider some well known mathematical theories.
If you already know them you may skip reading this chapter (or its
parts).
\section{Order theory}
\subsection{Posets}
\begin{defn}
\index{identity relation}The \emph{identity relation} on a set $A$
is $\id_{A}=\setcond{(a,a)}{a\in A}$.
\end{defn}
\begin{defn}
\index{preorder}A \emph{preorder} on a set $A$ is a binary relation~$\sqsubseteq$ on~$A$ which is:
\begin{itemize}
\item \emph{reflexive} on $A$ that is $\opinparens{\sqsubseteq}\supseteq\id_{A}$ or what is the same $\forall x\in A:x\sqsubseteq x$;
\item \emph{transitive} that is $\opinparens{\sqsubseteq}\circ\opinparens{\sqsubseteq}\subseteq\opinparens{\sqsubseteq}$
or what is the same \[ \forall x,y,z:(x\sqsubseteq y\land y\sqsubseteq z\Rightarrow x\sqsubseteq z). \]
\end{itemize}
\end{defn}
\begin{defn}
\index{partial order}A \emph{partial order} on a set $A$ is a preorder
on $A$ which is \emph{antisymmetric} that is $\opinparens{\sqsubseteq}\cap\opinparens{\sqsubseteq}\subseteq\id_A$
or what is the same \[ \forall x,y\in A:(x\sqsubseteq y\land y\sqsubseteq x\Rightarrow x=y). \]
\end{defn}
The reverse relation is denoted $\sqsupseteq$.
\begin{defn}
\index{subelement}$a$ is a subelement of $b$ (or what is the same
$a$ is \emph{contained} in $b$ or $b$ \emph{contains} $a$) iff
$a\sqsubseteq b$.\end{defn}
\begin{obvious}
The reverse of a partial order is also a partial order.\end{obvious}
\begin{defn}
\index{set!partially ordered}\index{poset}A set $A$ together with
a partial order on it is called a \emph{partially ordered set} (\emph{poset}
for short).
\end{defn}
An example of a poset is the set~$\mathbb{R}$ of real numbers with $\mathord{\sqsubseteq} = \mathord{\leq}$.
Another example is the set~$\subsets A$ of all subsets of an arbitrary fixed set~$A$ with $\mathord{\sqsubseteq} = \mathord{\subseteq}$.
Note that this poset is (in general) not linear (see definition of \emph{linear} poset below.)
\begin{defn}
\index{partial order!strict}Strict partial order $\sqsubset$ corresponding
to the partial order $\sqsubseteq$ on a set $A$ is defined by the
formula $\opinparens{\sqsubset}=\opinparens{\sqsubseteq}\setminus\id_{A}$.
In other words, \[ a\sqsubset b\Leftrightarrow a\sqsubseteq b\land a\ne b. \]
\end{defn}
An example of strict partial order is~$<$ on the set~$\mathbb{R}$ of real numbers.
\begin{defn}
\index{partial order!restricted}A partial order on a set $A$ \emph{restricted}
to a set $B\subseteq A$ is $\opinparens{\sqsubseteq}\cap(B\times B)$.\end{defn}
\begin{obvious}
A partial order on a set $A$ restricted to a set $B\subseteq A$
is a partial order on $B$.\end{obvious}
\begin{defn}
~
\begin{itemize}
\item \index{least element}The \emph{least} element $\bot$ of a poset
$\mathfrak{A}$ is defined by the formula $\forall a\in\mathfrak{A}:\bot\sqsubseteq a$.
\item \index{greatest element}The \emph{greatest} element $\top$ of a
poset $\mathfrak{A}$ is defined by the formula $\forall a\in\mathfrak{A}:\top\sqsupseteq a$.
\end{itemize}
\end{defn}
\begin{prop}
There exist no more than one least element and no more than one greatest
element (for a given poset).\end{prop}
\begin{proof}
By antisymmetry.\end{proof}
\begin{defn}
\index{dual!order}The \emph{dual} order for $\sqsubseteq$ is $\sqsupseteq$.\end{defn}
\begin{obvious}
Dual of a partial order is a partial order.\end{obvious}
\begin{defn}
\index{dual!poset}The \emph{dual} poset for a poset $(A,\mathord{\sqsubseteq})$
is the poset $(A,\mathord{\sqsupseteq})$.
\end{defn}
I will denote dual of a poset~$\mathfrak{A}$ as $(\dual\mathfrak{A})$
and dual of an element~$a\in\mathfrak{A}$ (that is the same element
in the dual poset) as $(\dual a)$.
\index{duality!partial order}Below we will sometimes use \emph{duality}
that is replacement of the partial order and all related operations
and relations with their duals. In other words, it is enough to prove
a theorem for an order $\sqsubseteq$ and the similar theorem for
$\sqsupseteq$ follows by duality.
\begin{defn}
\index{bounded above}
\index{bounded below}
A subset~$P$ of a poset~$\mathfrak{A}$ is called \emph{bounded
above} if there exists $t\in\mathfrak{A}$ such that
$\forall x\in P:t\sqsupseteq x$. \emph{Bounded below} is
defined dually.
\end{defn}
\subsubsection{Intersecting and joining elements}
Let $\mathfrak{A}$ be a poset.
\begin{defn}
\index{intersecting elements}Call elements $a$ and $b$ of $\mathfrak{A}$
\emph{intersecting}, denoted $a\nasymp b$, when there exists a non-least
element $c$ such that $c\sqsubseteq a\land c\sqsubseteq b$.
\end{defn}
\begin{defn}
$a\asymp b\eqdef\lnot(a\nasymp b)$.\end{defn}
\begin{obvious}
$a_{0}\nasymp b_{0}\land a_{1}\sqsupseteq a_{0}\land b_{1}\sqsupseteq b_{0}\Rightarrow a_{1}\nasymp b_{1}$.\end{obvious}
\begin{defn}
\index{joining elements}I call elements $a$ and $b$ of $\mathfrak{A}$
\emph{joining} and denote $a\equiv b$ when there is no a non-greatest
element $c$ such that $c\sqsupseteq a\land c\sqsupseteq b$.
\end{defn}
\begin{defn}
$a\nequiv b\eqdef\lnot(a\equiv b)$.\end{defn}
\begin{obvious}
Intersecting is the dual of non-joining.
\end{obvious}
\begin{obvious}
$a_{0}\equiv b_{0}\land a_{1}\sqsupseteq a_{0}\land b_{1}\sqsupseteq b_{0}\Rightarrow a_{1}\equiv b_{1}$.
\end{obvious}
\subsection{Linear order}
\begin{defn}
\index{linearly ordered set}A poset $\mathfrak{A}$ is called \emph{linearly
ordered set} (or what is the same, \emph{totally ordered set}) if
$a\sqsupseteq b\lor b\sqsupseteq a$ for every $a,b\in\mathfrak{A}$.\end{defn}
\begin{example}
The set of real numbers with the customary order is a linearly ordered
set.\end{example}
\begin{defn}
\index{chain}A set $X\in\subsets\mathfrak{A}$ where $\mathfrak{A}$
is a poset is called \emph{chain} if $\mathfrak{A}$ restricted to
$X$ is a total order.
\end{defn}
\subsection{Meets and joins}
Let $\mathfrak{A}$ be a poset.
\begin{defn}
\index{least element}Given a set $X\in\subsets\mathfrak{A}$ the
\emph{least element} (also called \emph{minimum} and denoted $\min X$)
of $X$ is such $a\in X$ that $\forall x\in X:a\sqsubseteq x$.
\end{defn}
Least element does not necessarily exists. But if it exists:
\begin{prop}
For a given $X\in\subsets\mathfrak{A}$ there exist no more than one
least element.\end{prop}
\begin{proof}
It follows from anti-symmetry.
\end{proof}
\emph{Greatest element} is the dual of least element:
\begin{defn}
\index{greatest element}Given a set $X\in\subsets\mathfrak{A}$ the
\emph{greatest element} (also called \emph{maximum} and denoted $\max X$)
of $X$ is such $a\in X$ that $\forall x\in X:a\sqsupseteq x$.\end{defn}
\begin{rem}
Least and greatest elements of a set $X$ is a trivial generalization
of the above defined least and greatest element for the entire poset.\end{rem}
\begin{defn}
~
\begin{itemize}
\item \index{minimal element}A \emph{minimal} element of a set $X\in\subsets\mathfrak{A}$
is such $a\in\mathfrak{A}$ that $\nexists x\in X:a\sqsupset x$.
\item \index{maximal element}A \emph{maximal} element of a set $X\in\subsets\mathfrak{A}$
is such $a\in\mathfrak{A}$ that $\nexists x\in X:a\sqsubset x$.
\end{itemize}
\end{defn}
\begin{rem}
Minimal element is not the same as minimum, and maximal element is
not the same as maximum.\end{rem}
\begin{obvious}
~
\begin{enumerate}
\item The least element (if it exists) is a minimal element.
\item The greatest element (if it exists) is a maximal element.
\end{enumerate}
\end{obvious}
\begin{xca}
Show that there may be more than one minimal and more than one maximal
element for some poset.\end{xca}
\begin{defn}
\index{bounds!upper}\emph{Upper bounds} of a set $X$ is the set
$\setcond{y\in\mathfrak{A}}{\forall x\in X:y\sqsupseteq x}$.
\end{defn}
The dual notion:
\begin{defn}
\index{bounds!lower}\emph{Lower bounds} of a set $X$ is the set
$\setcond{y\in\mathfrak{A}}{\forall x\in X:y\sqsubseteq x}$.
\end{defn}
\begin{defn}
\index{join}\index{supremum}\emph{Join} $\bigsqcup X$ (also called
\emph{supremum} and denoted ``$\sup X$'') of a set $X$ is the
least element of its upper bounds (if it exists).
\end{defn}
\begin{defn}
\index{meet}\index{infimum}\emph{Meet} $\bigsqcap X$ (also called
\emph{infimum} and denoted ``$\inf X$'') of a set $X$ is the greatest
element of its lower bounds (if it exists).
\end{defn}
We will also denote $\bigsqcup_{i\in X}f(i)=\bigsqcup\setcond{f(i)}{x\in X}$
and $\bigsqcap_{i\in X}f(i)=\bigsqcap\setcond{f(i)}{x\in X}$.
We will write $b=\bigsqcup X$ when $b\in\mathfrak{A}$ is the join
of $X$ or say that $\bigsqcup X$ does not exist if there are no
such $b\in\mathfrak{A}$. (And dually for meets.)
\begin{xca}
Provide an example of $\bigsqcup X\notin X$ for some set $X$ on
some poset.\end{xca}
\begin{prop}
~
\begin{enumerate}
\item If $b$ is the greatest element of $X$ then $\bigsqcup X=b$.
\item If $b$ is the least element of $X$ then $\bigsqcap X=b$.
\end{enumerate}
\end{prop}
\begin{proof}
We will prove only the first as the second is dual.
Let $b$ be the greatest element of $X$. Then upper bounds of $X$
are $\setcond{y\in\mathfrak{A}}{y\sqsupseteq b}$. Obviously $b$
is the least element of this set, that is the join.\end{proof}
\begin{defn}
\index{join!binary}\emph{Binary joins and meets} are defined by the
formulas
\[
x\sqcup y=\bigsqcup\{x,y\}\quad\text{and}\quad x\sqcup y=\bigsqcap\{x,y\}.
\]
\end{defn}
\begin{obvious}
$\sqcup$ and $\sqcap$ are symmetric operations (whenever these are
defined for given $x$ and $y$).\end{obvious}
\begin{thm}
~
\begin{enumerate}
\item If $\bigsqcup X$ exists then $y\sqsupseteq\bigsqcup X\Leftrightarrow\forall x\in X:y\sqsupseteq x$.
\item If $\bigsqcap X$ exists then $y\sqsubseteq\bigsqcap X\Leftrightarrow\forall x\in X:y\sqsubseteq x$.
\end{enumerate}
\end{thm}
\begin{proof}
I will prove only the first as the second follows by duality.
$y\sqsupseteq\bigsqcup X\Leftrightarrow y\text{ is an upper bound for }X\Leftrightarrow\forall x\in X:y\sqsupseteq x$.
\end{proof}
\begin{cor}
~
\begin{enumerate}
\item If $a\sqcup b$ exists then $y\sqsupseteq a\sqcup b\Leftrightarrow y\sqsupseteq a\land y\sqsupseteq b$.
\item If $a\sqcap b$ exists then $y\sqsubseteq a\sqcap b\Leftrightarrow y\sqsubseteq a\land y\sqsubseteq b$.
\end{enumerate}
\end{cor}
I will denote meets and joins for a specific poset $\mathfrak{A}$
as $\bigsqcap^{\mathfrak{A}}$, $\bigsqcup^{\mathfrak{A}}$, $\sqcap^{\mathfrak{A}}$,
$\sqcup^{\mathfrak{A}}$.
\subsection{Semilattices}
\begin{defn}
~
\begin{enumerate}
\item \index{semilattice!join-semilattice}A \emph{join-semilattice} is
a poset $\mathfrak{A}$ such that $a\sqcup b$ is defined for every
$a,b\in\mathfrak{A}$.
\item \index{semilattice!meet-semilattice}A \emph{meet-semilattice} is
a poset $\mathfrak{A}$ such that $a\sqcap b$ is defined for every
$a,b\in\mathfrak{A}$.
\end{enumerate}
\end{defn}
\begin{thm}
~
\begin{enumerate}
\item The operation $\sqcup$ is associative for any join-semilattice.
\item The operation $\sqcap$ is associative for any meet-semilattice.
\end{enumerate}
\end{thm}
\begin{proof}
I will prove only the first as the second follows by duality.
We need to prove $(a\sqcup b)\sqcup c=a\sqcup(b\sqcup c)$ for every
$a,b,c\in\mathfrak{A}$.
Taking into account the definition of join, it is enough to prove
that
\[
x\sqsupseteq(a\sqcup b)\sqcup c\Leftrightarrow x\sqsupseteq a\sqcup(b\sqcup c)
\]
for every $x\in\mathfrak{A}$. Really, this follows from the chain
of equivalences:
\begin{align*}
x\sqsupseteq(a\sqcup b)\sqcup c & \Leftrightarrow\\
x\sqsupseteq a\sqcup b\land x\sqsupseteq c & \Leftrightarrow\\
x\sqsupseteq a\land x\sqsupseteq b\land x\sqsupseteq c & \Leftrightarrow\\
x\sqsupseteq a\land x\sqsupseteq b\sqcup c & \Leftrightarrow\\
x\sqsupseteq a\sqcup(b\sqcup c).
\end{align*}
\end{proof}
\begin{obvious}
$a\nasymp b$ iff $a\sqcap b$ is non-least, for every elements $a$,
$b$ of a meet-semilattice.
\end{obvious}
\begin{obvious}
$a\equiv b$ iff $a\sqcup b$ is the greatest element, for every elements
$a$, $b$ of a join-semilattice.
\end{obvious}
\subsection{Lattices and complete lattices}
\begin{defn}
\index{poset!bounded}A \emph{bounded} poset is a poset having both
least and greatest elements.
\end{defn}
\begin{defn}
\index{lattice}\emph{Lattice} is a poset which is both join-semilattice
and meet-semilattice.
\end{defn}
\begin{defn}
\index{lattice!complete}A \emph{complete lattice} is a poset $\mathfrak{A}$
such that for every $X\in\subsets\mathfrak{A}$ both $\bigsqcup X$
and $\bigsqcap X$ exist.\end{defn}
\begin{obvious}
Every complete lattice is a lattice.\end{obvious}
\begin{prop}
Every complete lattice is a bounded poset.\end{prop}
\begin{proof}
$\bigsqcup\emptyset$ is the least and $\bigsqcap\emptyset$ is the
greatest element.\end{proof}
\begin{thm}
Let $\mathfrak{A}$ be a poset.
\begin{enumerate}
\item If $\bigsqcup X$ is defined for every $X\in\subsets\mathfrak{A}$,
then $\mathfrak{A}$ is a complete lattice.
\item If $\bigsqcap X$ is defined for every $X\in\subsets\mathfrak{A}$,
then $\mathfrak{A}$ is a complete lattice.
\end{enumerate}
\end{thm}
\begin{proof}
See \cite{pm:complete-lattice-criteria} or any lattice theory reference.\end{proof}
\begin{obvious}
If $X\subseteq Y$ for some $X,Y\in\subsets\mathfrak{A}$ where $\mathfrak{A}$
is a complete lattice, then
\begin{enumerate}
\item $\bigsqcup X\sqsubseteq\bigsqcup Y$;
\item $\bigsqcap X\sqsupseteq\bigsqcap Y$.
\end{enumerate}
\end{obvious}
\begin{prop}
If $S\in\subsets\subsets\mathfrak{A}$ then for every complete lattice
$\mathfrak{A}$
\begin{enumerate}
\item $\bigsqcup\bigcup S=\bigsqcup_{X\in S}\bigsqcup X$;
\item $\bigsqcap\bigcup S=\bigsqcap_{X\in S}\bigsqcap X$.
\end{enumerate}
\end{prop}
\begin{proof}
We will prove only the first as the second is dual.
By definition of joins, it is enough to prove $y\sqsupseteq\bigsqcup\bigcup S\Leftrightarrow y\sqsupseteq\bigsqcup_{X\in S}\bigsqcup X$.
Really,
\begin{align*}
y\sqsupseteq\bigsqcup\bigcup S & \Leftrightarrow\\
\forall x\in\bigcup S:y\sqsupseteq x & \Leftrightarrow\\
\forall X\in S\forall x\in X:y\sqsupseteq x & \Leftrightarrow\\
\forall X\in S:y\sqsupseteq\bigsqcup X & \Leftrightarrow\\
y\sqsupseteq\bigsqcup_{X\in S}\bigsqcup X.
\end{align*}
\end{proof}
\begin{defn}
A \emph{sublattice} of a lattice is it subset closed regarding~$\sqcup$
and~$\sqcap$.\end{defn}
\begin{obvious}
Sublattice with induced order is also a lattice.
\end{obvious}
\subsection{Distributivity of lattices}
\begin{defn}
\index{lattice!distributive}A \emph{distributive} lattice is such
lattice $\mathfrak{A}$ that for every $x,y,z\in\mathfrak{A}$
\begin{enumerate}
\item $x\sqcap(y\sqcup z)=(x\sqcap y)\sqcup(x\sqcap z)$;
\item $x\sqcup(y\sqcap z)=(x\sqcup y)\sqcap(x\sqcup z)$.
\end{enumerate}
\end{defn}
\begin{thm}
For a lattice to be distributive it is enough just one of the conditions:
\begin{enumerate}
\item $x\sqcap(y\sqcup z)=(x\sqcap y)\sqcup(x\sqcap z)$;
\item $x\sqcup(y\sqcap z)=(x\sqcup y)\sqcap(x\sqcup z)$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{align*}
(x\sqcup y)\sqcap(x\sqcup z) & =\\
((x\sqcup y)\sqcap x)\sqcup((x\sqcup y)\sqcap z) & =\\
x\sqcup((x\sqcap z)\sqcup(y\sqcap z)) & =\\
(x\sqcup(x\sqcap z))\sqcup(y\sqcap z) & =\\
x\sqcup(y\sqcap z)
\end{align*}
(applied $x\sqcap(y\sqcup z)=(x\sqcap y)\sqcup(x\sqcap z)$ twice).
\end{proof}
\subsection{Difference and complement}
\begin{defn}
\index{difference}\index{substractive}Let $\mathfrak{A}$ be a distributive
lattice with least element $\bot$. The \emph{difference} (denoted
$a\setminus b$) of elements $a$ and $b$ is such $c\in\mathfrak{A}$
that $b\sqcap c=\bot$ and $a\sqcup b=b\sqcup c$. I will call $b$
\emph{substractive} from \textbf{$a$} when $a\setminus b$ exists.\end{defn}
\begin{thm}
If $\mathfrak{A}$ is a distributive lattice with least element $\bot$,
there exists no more than one difference of elements $a$, $b$.\end{thm}
\begin{proof}
Let $c$ and $d$ be both differences $a\setminus b$. Then $b\sqcap c=b\sqcap d=\bot$
and $a\sqcup b=b\sqcup c=b\sqcup d$. So
\[
c=c\sqcap(b\sqcup c)=c\sqcap(b\sqcup d)=(c\sqcap b)\sqcup(c\sqcap d)=\bot\sqcup(c\sqcap d)=c\sqcap d.
\]
Similarly $d=d\sqcap c$. Consequently $c=c\sqcap d=d\sqcap c=d$.\end{proof}
\begin{defn}
\index{complementive}I will call $b$ \emph{complementive} to $a$
iff there exists $c\in\mathfrak{A}$ such that $b\sqcap c=\bot$ and
$b\sqcup c=a$.\end{defn}
\begin{prop}
$b$ is complementive to $a$ iff $b$ is substractive from $a$ and
$b\sqsubseteq a$.\end{prop}
\begin{proof}
~
\begin{description}
\item [{$\Leftarrow$}] Obvious.
\item [{$\Rightarrow$}] We deduce $b\sqsubseteq a$ from $b\sqcup c=a$.
Thus $a\sqcup b=a=b\sqcup c$.
\end{description}
\end{proof}
\begin{prop}
If $b$ is complementive to $a$ then $(a\setminus b)\sqcup b=a$.\end{prop}
\begin{proof}
Because $b\sqsubseteq a$ by the previous proposition.\end{proof}
\begin{defn}
\index{complement}Let $\mathfrak{A}$ be a bounded distributive lattice.
The \emph{complement} (denoted $\bar{a}$) of an element $a\in\mathfrak{A}$
is such $b\in\mathfrak{A}$ that $a\sqcap b=\bot$ and $a\sqcup b=\top$.\end{defn}
\begin{prop}
If $\mathfrak{A}$ is a bounded distributive lattice then $\bar{a}=\top\setminus a$.\end{prop}
\begin{proof}
$b=\bar{a}\Leftrightarrow b\sqcap a=\bot\land b\sqcup a=\top\Leftrightarrow b\sqcap a=\bot\land\top\sqcup a=a\sqcup b\Leftrightarrow b=\top\setminus a$.\end{proof}
\begin{cor}
If $\mathfrak{A}$ is a bounded distributive lattice then exists no
more than one complement of an element $a\in\mathfrak{A}$.\end{cor}
\begin{defn}
\index{complemented!element}An element of bounded distributive lattice
is called \emph{complemented} when its complement exists.
\end{defn}
\begin{defn}
\index{complemented!lattice}A distributive lattice is a \emph{complemented
lattice} iff every its element is complemented.\end{defn}
\begin{prop}
For a distributive lattice $(a\setminus b)\setminus c=a\setminus(b\sqcup c)$
if $a\setminus b$ and $(a\setminus b)\setminus c$ are defined.\end{prop}
\begin{proof}
$((a\setminus b)\setminus c)\sqcap c=\bot$; $((a\setminus b)\setminus c)\sqcup c=(a\setminus b)\sqcup c$;
$(a\setminus b)\sqcap b=\bot$; $(a\setminus b)\sqcup b=a\sqcup b$.
We need to prove $((a\setminus b)\setminus c)\sqcap(b\sqcup c)=\bot$
and $((a\setminus b)\setminus c)\sqcup(b\sqcup c)=a\sqcup(b\sqcup c)$.
In fact,
\begin{align*}
((a\setminus b)\setminus c)\sqcap(b\sqcup c) & =\\
(((a\setminus b)\setminus c)\sqcap b)\sqcup(((a\setminus b)\setminus c)\sqcap c) & =\\
(((a\setminus b)\setminus c)\sqcap b)\sqcup\bot & =\\
((a\setminus b)\setminus c)\sqcap b & \sqsubseteq\\
(a\setminus b)\sqcap b & =\bot,
\end{align*}
so $((a\setminus b)\setminus c)\sqcap(b\sqcup c)=\bot$;
\begin{align*}
((a\setminus b)\setminus c)\sqcup(b\sqcup c) & =\\
(((a\setminus b)\setminus c)\sqcup c)\sqcup b & =\\
(a\setminus b)\sqcup c\sqcup b & =\\
((a\setminus b)\sqcup b)\sqcup c & =\\
a\sqcup b\sqcup c.
\end{align*}
\end{proof}
\subsection{Boolean lattices}
\begin{defn}
\index{lattice!boolean}A \emph{boolean lattice} is a complemented
distributive lattice.
\end{defn}
The most important example of a boolean lattice is $\subsets A$ where
\textbf{$A$} is a set, ordered by set inclusion.
\begin{thm}
\index{Morgan's laws}(\noun{De Morgan}'s laws) For every elements $a$,
$b$ of a boolean lattice
\begin{enumerate}
\item $\overline{a\sqcup b}=\bar{a}\sqcap\bar{b}$;
\item $\overline{a\sqcap b}=\bar{a}\sqcup b$.
\end{enumerate}
\end{thm}
\begin{proof}
We will prove only the first as the second is dual.
It is enough to prove that $a\sqcup b$ is a complement of $\bar{a}\sqcap\bar{b}$.
Really:
\begin{gather*}
(a\sqcup b)\sqcap(\bar{a}\sqcap\bar{b})\sqsubseteq a\sqcap(\bar{a}\sqcap\bar{b})=(a\sqcap\bar{a})\sqcap\bar{b}=\bot\sqcap\bar{b}=\bot;\\
(a\sqcup b)\sqcup(\bar{a}\sqcap\bar{b})=((a\sqcup b)\sqcup\bar{a})\sqcap((a\sqcup b)\sqcup\bar{b})\sqsupseteq(a\sqcup\bar{a})\sqcap(b\sqcup\bar{b})=\top\sqcap\top=\top.
\end{gather*}
Thus $(a\sqcup b)\sqcap(\bar{a}\sqcap\bar{b})=\bot$ and $(a\sqcup b)\sqcup(\bar{a}\sqcap\bar{b})=\top$.\end{proof}
\begin{defn}
\index{join infinite distributive}A complete lattice $\mathfrak{A}$
is \emph{join infinite distributive} when $x\sqcap\bigsqcup S=\bigsqcup\rsupfun{x\sqcap}S$;
\index{meet infinite distributive}a complete lattice $\mathfrak{A}$
is \emph{meet infinite distributive} when $x\sqcup\bigsqcap S=\bigsqcap\rsupfun{x\sqcup}S$
for all $x\in\mathfrak{A}$ and $S\in\subsets\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{infinite distributive}\emph{Infinite distributive complete
lattice} is a complete lattice which is both join infinite distributive
and meet infinite distributive.\end{defn}
\begin{thm}\label{bool-inf-distr1}
For every boolean lattice~$\mathfrak{A}$, $x\in\mathfrak{A}$ and $S\in\subsets\mathfrak{A}$ we have:
\begin{enumerate}
\item $\bigsqcup\rsupfun{x\sqcap}S$ is defined and $x\sqcap\bigsqcup S=\bigsqcup\rsupfun{x\sqcap}S$ whenever $\bigsqcup S$ is defined.
\item $\bigsqcap\rsupfun{x\sqcup}S$ is defined and $x\sqcup\bigsqcap S=\bigsqcap\rsupfun{x\sqcup}S$ whenever $\bigsqcap S$ is defined.
\end{enumerate}
\end{thm}
\begin{proof}
We will prove only the first, as the other is dual.
We need to prove that $x\sqcap\bigsqcup S$ is the least upper bound of $\rsupfun{x\sqcap}S$.
That $x\sqcap\bigsqcup S$ is an upper bound of $\rsupfun{x\sqcap}S$ is obvious.
Now let \textbf{$u$} be any upper bound of $\rsupfun{x\sqcap}S$,
that is $x\sqcap y\sqsubseteq u$ for all $y\in S$. Then
\[
y=y\sqcap(x\sqcup\bar{x})=(y\sqcap x)\sqcup(y\sqcap\bar{x})\sqsubseteq u\sqcup\bar{x},
\]
and so $\bigsqcup S\sqsubseteq u\sqcup\bar{x}$. Thus
\[
x\sqcap\bigsqcup S\sqsubseteq x\sqcap(u\sqcup\bar{x})=(x\sqcap u)\sqcup(x\sqcap\bar{x})=(x\sqcap u)\sqcup\bot=x\sqcap u\sqsubseteq u,
\]
that is $x\sqcap\bigsqcup S$ is the least upper bound of $\rsupfun{x\sqcap}S$.\end{proof}
\begin{cor}\label{bool-inf-distr}
Every complete boolean lattice is both join infinite distributive
and meet infinite distributive.\end{cor}
\begin{thm}
\index{De Morgan's laws!infinite}(infinite \noun{De Morgan}'s laws) For
every subset $S$ of a complete boolean lattice
\begin{enumerate}
\item $\overline{\bigsqcup S}=\bigsqcap_{x\in S}\bar{x}$;
\item $\overline{\bigsqcap S}=\bigsqcup_{x\in S}\bar{x}$.
\end{enumerate}
\end{thm}
\begin{proof}
It's enough to prove that $\bigsqcup S$ is a complement of $\bigsqcap_{x\in S}\bar{x}$
(the second follows from duality). Really, using the previous theorem:
\begin{gather*}
\bigsqcup S\sqcup\bigsqcap_{x\in S}\bar{x}=\bigsqcap_{x\in S}\rsupfun{\bigsqcup S\sqcup}\bar{x}=\bigsqcap\setcond{\bigsqcup S\sqcup\bar{x}}{x\in S}\sqsupseteq\bigsqcap\setcond{x\sqcup\bar{x}}{x\in S}=\top;\\
\bigsqcup S\sqcap\bigsqcap_{x\in S}\bar{x}=\bigsqcup_{y\in S}\rsupfun{\bigsqcap_{x\in S}\bar{x}\sqcap}y=\bigsqcup\setcond{\bigsqcap_{x\in S}\bar{x}\sqcap y}{y\in S}\sqsubseteq\bigsqcup\setcond{\bar{y}\sqcap y}{y\in S}=\bot.
\end{gather*}
So $\bigsqcup S\sqcup\bigsqcap_{x\in S}\bar{x}=\top$ and $\bigsqcup S\sqcap\bigsqcap_{x\in S}\bar{x}=\bot$.
\end{proof}
\subsection{Center of a lattice}
\begin{defn}
\index{lattice!center}The \emph{center} $Z(\mathfrak{A})$ of a bounded
distributive lattice $\mathfrak{A}$ is the set of its complemented
elements.\end{defn}
\begin{rem}
For a definition of center of non-distributive lattices see \cite{neutralelements}.
\end{rem}
\begin{rem}
In \cite{ADTCGSBVA} the word center and the notation $Z(\mathfrak{A})$
are used in a different sense.\end{rem}
\begin{defn}
\index{sublattice!closed}A sublattice $K$ of a complete lattice
$L$ is a \emph{closed sublattice} of $L$ if $K$ contains the meet
and the join of any its nonempty subset.\end{defn}
\begin{thm}
Center of an infinitely distributive lattice is its closed sublattice.\end{thm}
\begin{proof}
See \cite{center-inf-distr}.\end{proof}
\begin{rem}
See \cite{center-complete} for a more strong result.\end{rem}
\begin{thm}
The center of a bounded distributive lattice constitutes its sublattice.\end{thm}
\begin{proof}
Let $\mathfrak{A}$ be a bounded distributive lattice and $Z(\mathfrak{A})$
be its center. Let $a,b\in Z(\mathfrak{A})$. Consequently $\bar{a},\bar{b}\in Z(\mathfrak{A})$.
Then $\bar{a}\sqcup\bar{b}$ is the complement of $a\sqcap b$ because
\begin{align*}
(a\sqcap b)\sqcap(\bar{a}\sqcup\bar{b})=(a\sqcap b\sqcap\bar{a})\sqcup(a\sqcap b\sqcap\bar{b})=\bot\sqcup\bot=\bot & \text{\quad and}\\
(a\sqcap b)\sqcup(\bar{a}\sqcup\bar{b})=(a\sqcup\bar{a}\sqcup\bar{b})\sqcap(b\sqcup{\bar{a}\sqcup\bar{b}})=\top\sqcap\top=\top.
\end{align*}
So $a\sqcap b$ is complemented. Similarly $a\sqcup b$ is complemented.\end{proof}
\begin{thm}
\label{centr-bool}The center of a bounded distributive lattice constitutes
a boolean lattice.\end{thm}
\begin{proof}
Because it is a distributive complemented lattice.
\end{proof}
\subsection{Atoms of posets}
\begin{defn}
\index{atom}An atom of a poset is an element~$a$ such that (for every its element~$x$)
$x\sqsubset a$ if and only if $x$ is the least element.\end{defn}
\begin{rem}
This definition is valid even for posets without least element.
\end{rem}
\begin{prop}
Element~$a$ is an atom iff both:
\begin{enumerate}
\item\label{atm-i} $x\sqsubset a$ implies $x$ is the least element;
\item\label{atm-nl} $a$ is non-least.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{description}
\item[$\Rightarrow$] Let $a$ be an atom.
\ref{atm-i} is obvious. If $a$ is least then $a\sqsubset a$ what is impossible, so~\ref{atm-nl}.
\item[$\Leftarrow$] Let~\ref{atm-i} and~\ref{atm-nl} hold.
We need to prove only that $x$ is least implies that $x\sqsubset a$ but this follows from $a$ being non-least.
\end{description}
\end{proof}
\begin{example}
Atoms of the boolean algebra~$\subsets A$ (ordered by set inclusion) are one-element sets.
\end{example}
I will denote $\atoms^{\mathfrak{A}}a$ or just $(\atoms a)$ the
set of atoms contained in an element $a$ of a poset $\mathfrak{A}$.
I will denote $\atoms^{\mathfrak{A}}$ the set of all atoms of a poset
$\mathfrak{A}$.
\begin{defn}
\index{atomic}A poset $\mathfrak{A}$ is called \emph{atomic} iff
$\atoms a\neq\emptyset$ for every non-least element $a$ of the poset
$\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{atomistic}\emph{Atomistic poset} is such a poset that $a=\bigsqcup\atoms a$
for every element $a$ of this poset.\end{defn}
\begin{obvious}
Every atomistic poset is atomic.\end{obvious}
\begin{prop}
Let $\mathfrak{A}$ be a poset. If $a$ is an atom of $\mathfrak{A}$
and $B\in\mathfrak{A}$ then
\[
a\in\atoms B\Leftrightarrow a\sqsubseteq B\Leftrightarrow a\nasymp B.
\]
\end{prop}
\begin{proof}
~
\begin{description}
\item [{$a\in\atoms B\Leftrightarrow a\sqsubseteq B$}] Obvious.
\item [{$a\sqsubseteq B\Rightarrow a\nasymp B$}] $a\sqsubseteq B\Rightarrow a\sqsubseteq a\land a\sqsubseteq B$,
thus $a\nasymp B$ because $a$ is not least.
\item [{$a\sqsubseteq B\Leftarrow a\nasymp B$}] $a\nasymp B$ implies
existence of non-least element $x$ such that $x\sqsubseteq B$ and
$x\sqsubseteq a$. Because $a$ is an atom, we have $x=a$. So $a\sqsubseteq B$.
\end{description}
\end{proof}
\begin{thm}
A poset is atomistic iff every its element can be represented as join of atoms.
\end{thm}
\begin{proof}
~
\begin{description}
\item[$\Rightarrow$] Obvious.
\item[$\Leftarrow$] Let $a = \bigsqcup S$ where $S$ is a set of atoms. We will prove that $a$ is
the least upper bound of $\atoms a$.
That $a$ is an upper bound of $\atoms a$ is obvious. Let $x$ is an upper
bound of $\atoms a$. Then $x \sqsupseteq \bigsqcup S$ because $S\subseteq \atoms a$. Thus $x \sqsupseteq a$.
\end{description}
\end{proof}
\begin{thm}\label{atoms-infmeet}
$\atoms\bigsqcap S=\bigcap\rsupfun{\atoms}S$ whenever $\bigsqcap S$
is defined for every $S\in\subsets\mathfrak{A}$ where $\mathfrak{A}$
is a poset.\end{thm}
\begin{proof}
For any atom
\begin{align*}
c\in\atoms\bigsqcap S & \Leftrightarrow\\
c\sqsubseteq\bigsqcap S & \Leftrightarrow\\
\forall a\in S:c\sqsubseteq a & \Leftrightarrow\\
\forall a\in S:c\in\atoms a & \Leftrightarrow\\
c\in\bigcap\rsupfun{\atoms}S.
\end{align*}
\end{proof}
\begin{cor}
\label{atoms-meet}$\atoms(a\sqcap b)=\atoms a\cap\atoms b$ for an
arbitrary meet-semilattice.\end{cor}
\begin{thm}
A complete boolean lattice is atomic iff it is atomistic.\end{thm}
\begin{proof}
~
\begin{description}
\item [{$\Leftarrow$}] Obvious.
\item [{$\Rightarrow$}] Let $\mathfrak{A}$ be an atomic boolean lattice.
Let $a\in\mathfrak{A}$. Suppose $b=\bigsqcup\atoms a\sqsubset a$.
If $x\in\atoms(a\setminus b)$ then $x\sqsubseteq a\setminus b$ and
so $x\sqsubseteq a$ and hence $x\sqsubseteq b$. But we have $x=x\sqcap b\sqsubseteq(a\setminus b)\sqcap b=\bot$
what contradicts to our supposition.
\end{description}
\end{proof}
\subsection{\index{Kuratowski's lemma}Kuratowski's lemma}
\begin{thm}
(\noun{Kuratowski}'s lemma) Any chain in a poset is contained in a maximal
chain (if we order chains by inclusion).
\end{thm}
I will skip the proof of \noun{Kuratowski}'s lemma as this proof can be found
in any set theory or order theory reference.
\subsection{Homomorphisms of posets and lattices}
\begin{defn}
\index{monotone}\index{order homomorphism}A \emph{monotone} function
(also called \emph{order homomorphism}) from a poset $\mathfrak{A}$
to a poset $\mathfrak{B}$ is such a function $f$ that $x\sqsubseteq y\Rightarrow fx\sqsubseteq fy$
for every $x,y\in\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{antitone}A \emph{antitone} function (also called \emph{antitone
order homomorphism}) from a poset $\mathfrak{A}$ to a poset $\mathfrak{B}$
is such a function $f$ that $x\sqsubseteq y\Rightarrow fx\sqsupseteq fy$
for every $x,y\in\mathfrak{A}$.
\end{defn}
\begin{defn}
\index{order embedding}\emph{Order embedding} is a function~$f$ from poset~$\mathfrak{A}$ to a poset~$\mathfrak{B}$
such that $x\sqsubseteq y\Leftrightarrow fx\sqsubseteq fy$ for every $x,y\in\mathfrak{A}$.
\end{defn}
\begin{prop}
Every order embedding is injective.
\end{prop}
\begin{proof}
$fx=fy$ implies $x\sqsubseteq y$ and $y\sqsubseteq x$.
\end{proof}
\begin{obvious}
Every order embedding is an order homomorphism.
\end{obvious}
\begin{defn}
\index{antitone order embedding}\emph{Antitone order embedding} is a function~$f$ from poset~$\mathfrak{A}$ to a poset~$\mathfrak{B}$
such that $x\sqsubseteq y\Leftrightarrow fx\sqsupseteq fy$ for every $x,y\in\mathfrak{A}$.
\end{defn}
\begin{obvious}
Antitone order embedding is an order embedding between a poset and a dual of (another) poset.
\end{obvious}
\begin{defn}
\index{order isomorphism}\emph{Order isomorphism} is a surjective
order embedding.
\end{defn}
Order isomorphism preserves properties of posets, such as order, joins
and meets, etc.
\begin{defn}
\index{antitone order isomorphism}\emph{Antitone order isomorphism}
is a surjective antitone order embedding.
\end{defn}
\begin{defn}
~
\begin{enumerate}
\item \index{join semilattice!homomorphism}\emph{Join semilattice homomorphism}
is a function $f$ from a join semilattice $\mathfrak{A}$ to a join
semilattice $\mathfrak{B}$, such that $f(x\sqcup y)=fx\sqcup fy$
for every $x,y\in\mathfrak{A}$.
\item \index{meet semilattice!homomorphism}\emph{Meet semilattice homomorphism}
is a function $f$ from a meet semilattice $\mathfrak{A}$ to a meet
semilattice $\mathfrak{B}$, such that $f(x\sqcap y)=fx\sqcap fy$
for every $x,y\in\mathfrak{A}$.
\end{enumerate}
\end{defn}
\begin{obvious}
~
\begin{enumerate}
\item Join semilattice homomorphisms are monotone.
\item Meet semilattice homomorphisms are monotone.
\end{enumerate}
\end{obvious}
\begin{defn}
\index{lattice!homomorphism}A \emph{lattice homomorphism} is a function
from a lattice to a lattice, which is both join semilattice homomorphism
and meet semilattice homomorphism.
\end{defn}
\begin{defn}
\index{complete lattice!homomorphism}\emph{Complete lattice homomorphism}
from a complete lattice $\mathfrak{A}$ to a complete lattice $\mathfrak{B}$
is a function f from $\mathfrak{A}$ to $\mathfrak{B}$ which preserves
all meets and joins, that is $f\bigsqcup S=\bigsqcup\rsupfun fS$
and $f\bigsqcap S=\bigsqcap\rsupfun fS$ for every $S\in\subsets\mathfrak{A}$.
\end{defn}
\subsection{Galois connections}
See \cite{galois-and-fixed,primer-galois} for more detailed treatment
of Galois connections.
\begin{defn}
\index{Galois!connection}Let $\mathfrak{A}$ and $\mathfrak{B}$
be two posets. A \emph{Galois connection} between $\mathfrak{A}$
and $\mathfrak{B}$ is a pair of functions $f=(f^{\ast},f_{\ast})$
with $f^{\ast}:\mathfrak{A}\rightarrow\mathfrak{B}$ and $f_{\ast}:\mathfrak{B}\rightarrow\mathfrak{A}$
such that:
\[
\forall x\in\mathfrak{A},y\in\mathfrak{B}:(f^{\ast}x\sqsubseteq y\Leftrightarrow x\sqsubseteq f_{\ast}y).
\]
\index{adjoint!lower}\index{adjoint!upper}$f_{\ast}$ is called
\emph{the upper adjoint} of $f^{\ast}$ and $f^{\ast}$ is called
\emph{the lower adjoint} of $f_{\ast}$.\end{defn}
\begin{thm}
\label{galois-second}A pair $(f^{\ast},f_{\ast})$ of functions $f^{\ast}:\mathfrak{A}\rightarrow\mathfrak{B}$
and $f_{\ast}:\mathfrak{B}\rightarrow\mathfrak{A}$ is a Galois connection
iff both of the following:
\begin{enumerate}
\item \label{galois-second-mono}$f^{\ast}$ and $f_{\ast}$ are monotone.
\item \label{galois-second-ineq}$x\sqsubseteq f_{\ast}f^{\ast}x$ and $f^{\ast}f_{\ast}y\sqsubseteq y$
for every $x\in\mathfrak{A}$ and $y\in\mathfrak{B}$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{description}
\item [{$\Rightarrow$}]~
\begin{disorder}
\item [{\ref{galois-second-ineq}}] $x\sqsubseteq f_{\ast}f^{\ast}x$ since
$f^{\ast}x\sqsubseteq f^{\ast}x$; $f^{\ast}f_{\ast}y\sqsubseteq y$
since $f_{\ast}y\sqsubseteq f_{\ast}y$.
\item [{\ref{galois-second-mono}}] Let $a,b\in\mathfrak{A}$ and $a\sqsubseteq b$.
Then $a\sqsubseteq b\sqsubseteq f_{\ast}f^{\ast}b$. So by definition
$f^{\ast}a\sqsubseteq f^{\ast}b$ that is $f^{\ast}$ is monotone.
Analogously $f_{\ast}$ is monotone.
\end{disorder}
\item [{$\Leftarrow$}] $f^{\ast}x\sqsubseteq y\Rightarrow f_{\ast}f^{\ast}x\sqsubseteq f_{\ast}y\Rightarrow x\sqsubseteq f_{\ast}y$.
The other direction is analogous.
\end{description}
\end{proof}
\begin{thm}
~
\begin{enumerate}
\item \label{galois-three-a}$f^{\ast}\circ f_{\ast}\circ f^{\ast}=f^{\ast}$.
\item \label{galois-three-b}$f_{\ast}\circ f^{\ast}\circ f_{\ast}=f_{\ast}$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{disorder}
\item [{\ref{galois-three-a}}] Let $x\in\mathfrak{A}$. We have $x\sqsubseteq f_{\ast}f^{\ast}x$;
consequently $f^{\ast}x\sqsubseteq f^{\ast}f_{\ast}f^{\ast}x$. On
the other hand, $f^{\ast}f_{\ast}f^{\ast}x\sqsubseteq f^{\ast}x$.
So $f^{\ast}f_{\ast}f^{\ast}x=f^{\ast}x$.
\item [{\ref{galois-three-b}}] Similar.
\end{disorder}
\end{proof}
\begin{defn}
\index{idempotent}A function $f$ is called \emph{idempotent} iff $f(f(X))=f(X)$
for every argument $X$.\end{defn}
\begin{prop}
$f^{\ast}\circ f_{\ast}$ and $f_{\ast}\circ f^{\ast}$ are idempotent.\end{prop}
\begin{proof}
$f^{\ast}\circ f_{\ast}$ is idempotent because $f^{\ast}f_{\ast}f^{\ast}f_{\ast}y=f^{\ast}f_{\ast}y$.
$f_{\ast}\circ f^{\ast}$ is similar.\end{proof}
\begin{thm}
\label{adj-by-other}Each of two adjoints is uniquely determined by
the other.\end{thm}
\begin{proof}
Let $p$ and $q$ be both upper adjoints of $f$. We have for all
$x\in\mathfrak{A}$ and $y\in\mathfrak{B}$:
\[
x\sqsubseteq p(y)\Leftrightarrow f(x)\sqsubseteq y\Leftrightarrow x\sqsubseteq q(y).
\]
For $x=p(y)$ we obtain $p(y)\sqsubseteq q(y)$ and for $x=q(y)$
we obtain $q(y)\sqsubseteq p(y)$. So $q(y)=p(y)$.\end{proof}
\begin{thm}\label{adj-max}
Let $f$ be a function from a poset $\mathfrak{A}$ to a poset $\mathfrak{B}$.
\begin{enumerate}
\item Both:
\begin{enumerate}
\item \label{max-gal}If $f$ is monotone and $g(b)=\max\setcond{x\in\mathfrak{A}}{fx\sqsubseteq b}$
is defined for every $b\in\mathfrak{B}$ then $g$ is the upper adjoint
of $f$.
\item \label{gal-max}If $g:\mathfrak{B}\rightarrow\mathfrak{A}$ is the
upper adjoint of $f$ then $g(b)=\max\setcond{x\in\mathfrak{A}}{fx\sqsubseteq b}$
for every $b\in\mathfrak{B}$.
\end{enumerate}
\item Both:
\begin{enumerate}
\item If $f$ is monotone and $g(b)=\min\setcond{x\in\mathfrak{A}}{fx\sqsupseteq b}$
is defined for every $b\in\mathfrak{B}$ then $g$ is the lower adjoint
of $f$.
\item If $g:\mathfrak{B}\rightarrow\mathfrak{A}$ is the lower adjoint of
$f$ then $g(b)=\min\setcond{x\in\mathfrak{A}}{fx\sqsupseteq b}$
for every $b\in\mathfrak{B}$.
\end{enumerate}
\end{enumerate}
\end{thm}
\begin{proof}
We will prove only the first as the second is its dual.
\begin{widedisorder}
\item [{\ref{max-gal}}] Let $g(b)=\max\setcond{x\in\mathfrak{A}}{fx\sqsubseteq b}$
for every $b\in\mathfrak{B}$. Then
\[
x\sqsubseteq gy\Leftrightarrow x\sqsubseteq\max\setcond{x\in\mathfrak{A}}{fx\sqsubseteq y}\Rightarrow fx\sqsubseteq y
\]
(because $f$ is monotone) and
\[
x\sqsubseteq gy\Leftrightarrow x\sqsubseteq\max\setcond{x\in\mathfrak{A}}{fx\sqsubseteq y}\Leftarrow fx\sqsubseteq y.
\]
So $fx\sqsubseteq y\Leftrightarrow x\sqsubseteq gy$ that is $f$
is the lower adjoint of $g$.
\item [{\ref{gal-max}}] We have
\[
g(b)=\max\setcond{x\in\mathfrak{A}}{fx\sqsubseteq b}\Leftrightarrow fgb\sqsubseteq b\land\forall x\in\mathfrak{A}:(fx\sqsubseteq b\Rightarrow x\sqsubseteq gb).
\]
what is true by properties of adjoints.
\end{widedisorder}
\end{proof}
\begin{thm}
Let $f$ be a function from a poset $\mathfrak{A}$ to a poset $\mathfrak{B}$.
\begin{enumerate}
\item \label{all-inf}If $f$ is an upper adjoint, $f$ preserves all existing
infima in $\mathfrak{A}$.
\item \label{inf-then-adj}If $\mathfrak{A}$ is a complete lattice and
$f$ preserves all infima, then $f$ is an upper adjoint of a function
$\mathfrak{B}\rightarrow\mathfrak{A}$.
\item If $f$ is a lower adjoint, $f$ preserves all existing suprema in
$\mathfrak{A}$.
\item If $\mathfrak{A}$ is a complete lattice and $f$ preserves all suprema,
then $f$ is a lower adjoint of a function $\mathfrak{B}\rightarrow\mathfrak{A}$.
\end{enumerate}
\end{thm}
\begin{proof}
We will prove only first two items because the rest items are similar.
\begin{widedisorder}
\item [{\ref{all-inf}}] Let $S\in\subsets\mathfrak{A}$ and $\bigsqcap S$
exists. $f\bigsqcap S$ is a lower bound for $\rsupfun fS$ because