-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-decomposition.tex
236 lines (208 loc) · 9.42 KB
/
chap-decomposition.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
\chapter{On distributivity of composition with a principal reloid}
\section{\index{decomposition of composition}Decomposition of composition
of binary relations}
\begin{rem}
Sorry for an unfortunate choice of terminology: ``composition''
and ``decomposition'' are unrelated.
\end{rem}
The idea of the proof below is that composition of binary relations
can be decomposed into two operations: $\otimes$ and $\dom$:
\[
g\otimes f=\setcond{((x,z),y)}{x\mathrel fy\land y\mathrel gz}.
\]
Composition of binary relations can be decomposed: $g\circ f=\dom(g\otimes f)$.
It can be decomposed even further: $g\otimes f=\Theta_{0}f\cap\Theta_{1}g$
where
\[
\Theta_{0}f=\setcond{((x,z),y)}{x\mathrel fy,z\in\mho}\quad\text{and}\quad\Theta_{1}f=\setcond{((x,z),y)}{y\mathrel fz,x\in\mho}.
\]
(Here $\mho$ is the Grothendieck universe.)
Now we will do a similar trick with reloids.
\section{\index{decomposition of composition!of reloids}Decomposition of
composition of reloids}
A similar thing for reloids:
In this chapter we will equate reloids with filters on cartesian products
of sets.
For composable reloids~$f$ and~$g$ we have
\begin{align*}
g\circ f & =\\
\bigsqcap^{\mathsf{RLD}(\Src f,\Dst g)}\setcond{G\circ F}{F\in\GR f,G\in\GR g} & =\\
\bigsqcap^{\mathsf{RLD}(\Src f,\Dst g)}\setcond{\dom(G\otimes F)}{F\in\GR f,G\in\GR g}.
\end{align*}
\begin{lem}
$\setcond{G\otimes F}{F\in\GR f,G\in\GR g}$ is a filter base.\end{lem}
\begin{proof}
Let $P,Q\in\setcond{G\otimes F}{F\in\GR f,G\in\GR g}$. Then $P=G_{0}\otimes F_{0}$,
$Q=G_{1}\otimes F_{1}$ for some $F_{0},F_{1}\in f$, $G_{0},G_{1}\in g$.
Then $F_{0}\cap F_{1}\in\up f$, $G_{0}\cap G_{1}\in\up g$ and thus
\[
P\cap Q\supseteq(F_{0}\cap F_{1})\otimes(G_{0}\cap G_{1})\in\setcond{G\otimes F}{F\in\GR f,G\in\GR g}.
\]
\end{proof}
\begin{cor}
$\setcond{\uparrow^{\mathscr{F}(\Src f\times\Dst g)}(G\otimes F)}{F\in\GR f,G\in\GR g}$
is a generalized filter base.\end{cor}
\begin{prop}
$g\circ f=\dom\bigsqcap^{\mathscr{F}(\Src f\times\Dst g)}\setcond{G\otimes F}{F\in\GR f,G\in\GR g}$.\end{prop}
\begin{proof}
$\uparrow^{\mathscr{F}(\Src f\times\Dst g)}\dom(G\otimes F)\sqsupseteq\dom\bigsqcap^{\mathscr{F}(\Src f\times\Dst g)}\setcond{G\otimes F}{F\in\GR f,G\in\GR g}$.
Thus
\[
g\circ f\sqsupseteq\dom\bigsqcap^{\mathscr{F}(\Src f\times\Dst g)}\setcond{G\otimes F}{F\in\GR f,G\in\GR g}.
\]
Let $X\in\up\dom\bigsqcap^{\mathscr{F}(\Src f\times\Dst g)}\setcond{G\otimes F}{F\in\up f,G\in\up g}$.
Then there exist $Y$ such that
\[
X\times Y\in\up\bigsqcap^{\mathscr{F}(\Src f\times\Dst g)}\setcond{G\otimes F}{F\in\up f,G\in\up g}.
\]
So because it is a generalized filter base $X\times Y\supseteq G\otimes F$
for some $F\in\up f$, $G\in\up g$. Thus $X\in\up\dom(G\otimes F)$.
$X\in\up(g\circ f)$.
\end{proof}
We can define $g\otimes f$ for reloids $f$, $g$:
\[
g\otimes f=\setcond{G\otimes F}{F\in\GR f,G\in\GR g}.
\]
Then
\[
g\circ f=\bigsqcap^{\mathscr{F}(\Src f\times\Dst g)}\rsupfun{\dom}(g\otimes f)=\dom\rsupfun{\uparrow^{\mathsf{RLD}(\Src f\times\Dst g,\mho)}}(g\otimes f).
\]
\section{Lemmas for the main result}
\begin{lem}
$(g\otimes f)\cap(h\otimes f)=(g\cap h)\otimes f$ for binary relations
$f$, $g$, $h$.\end{lem}
\begin{proof}
~
\begin{multline*}
(g\cap h)\otimes f=\Theta_{0}f\cap\Theta_{1}(g\cap h)=\Theta_{0}f\cap(\Theta_{1}g\cap\Theta_{1}h)=\\
(\Theta_{0}f\cap\Theta_{1}g)\cap(\Theta_{0}f\cap\Theta_{1}h)=(g\otimes f)\cap(h\otimes f).
\end{multline*}
\end{proof}
\begin{lem}
Let $F=\uparrow^{\mathsf{RLD}}f$ be a principal reloid (for a $\mathbf{Rel}$-morphism~$f$),
$T$~be a set of reloids from $\Dst F$ to a set $V$.
\[
\bigsqcap_{G\in\up\bigsqcup T}^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes f)=\bigsqcup_{G\in T}\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes F).
\]
\end{lem}
\begin{proof}
$\bigsqcap_{G\in\up\bigsqcup T}^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes f)\sqsupseteq\bigsqcup_{G\in T}\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes F)$
is obvious.
Let $K\in\up\bigsqcup_{G\in T}\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes F)$.
Then for each $G\in T$
\[
K\in\up\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes F);
\]
$K\in\up\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}\setcond{\Gamma\otimes f}{\Gamma\in G}$.
Then $K\in\setcond{\Gamma\otimes f}{\Gamma\in G}$ by properties of
generalized filter bases.
$K\in\setcond{(\Gamma_{0}\cap\dots\cap\Gamma_{n})\otimes f}{n\in\mathbb{N},\Gamma_{i}\in G}=\setcond{(\Gamma_{0}\otimes f)\cap\dots\cap(\Gamma_{n}\otimes f)}{n\in\mathbb{N},\Gamma_{i}\in G}$.
$\forall G\in T:K\supseteq(\Gamma_{G,0}\otimes f)\cap\dots\cap(\Gamma_{G,n}\otimes f)$
for some $n\in\mathbb{N}$, $\Gamma_{G,i}\in G$.
$K\supseteq\setcond{(\Gamma_{0}\otimes f)\cap\dots\cap(\Gamma_{n}\otimes f)}{n\in\mathbb{N},\Gamma_{i}\in G}$
where $\Gamma_{i}=\bigcup_{g\in G}\Gamma_{g,i}\in\up\bigsqcup T$.
$K\in\setcond{(\Gamma_{0}\otimes f)\cap\dots\cap(\Gamma_{n}\otimes f)}{n\in\mathbb{N}}$.
So
\begin{multline*}
K\in\setcond{(\Gamma'_{0}\otimes f)\cap\dots\cap(\Gamma'_{n}\otimes f)}{n\in\mathbb{N},\Gamma'_{i}\in\up\bigsqcup T}=\\
\setcond{(\Gamma'_{0}\cap\dots\cap\Gamma'_{n})\otimes f}{n\in\mathbb{N},\Gamma'_{i}\in\up\bigsqcup T}=\\
\up\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}\setcond{G\otimes f}{G\in\up\bigsqcup T}.
\end{multline*}
\end{proof}
\section{Proof of the main result}
Let's prove a special case of conjecture~\ref{rld-compl-mcompl}:
\begin{thm}
$\left(\bigsqcup T\right)\circ F=\bigsqcup\setcond{G\circ F}{G\in T}$
for every principal reloid $F=\uparrow^{\mathsf{RLD}}f$ (for a $\mathbf{Rel}$-morphism~$f$)
and a set $T$ of reloids from $\Dst F$ to some set $V$. (In other
words principal reloids are co-metacomplete and thus also metacomplete
by duality.)\end{thm}
\begin{proof}
~
\begin{align*}
\left(\bigsqcup T\right)\circ F & =\\
\bigsqcap^{\mathsf{RLD}(\Src f,V)}\rsupfun{\dom}\left(\left(\bigsqcup T\right)\otimes F\right) & =\\
\dom\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}\left(\left(\bigsqcup T\right)\otimes F\right) & =\\
\dom\bigsqcap_{G\in\up\bigsqcup T}^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes f);\\
\bigsqcup_{G\in T}(G\circ F) & =\\
\bigsqcup_{G\in T}\bigsqcap^{\mathsf{RLD}(\Src f,V)}\rsupfun{\dom}(G\otimes F) & =\\
\bigsqcup_{G\in T}\dom\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes F) & =\\
\dom\bigsqcup_{G\in T}\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes F).
\end{align*}
It's enough to prove
\[
\bigsqcap_{G\in\up\bigsqcup T}^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes f)=\bigsqcup_{G\in T}\bigsqcap^{\mathsf{RLD}(\Src f\times V,\mho)}(G\otimes F)
\]
but this is the statement of the lemma.
\end{proof}
\section{\index{embedding!reloids into funcoids}Embedding reloids into funcoids}
\begin{defn}
Let $f$ be a reloid. The funcoid
\[
\rho f=\mathsf{FCD}(\subsets(\Src f\times\Src f),\subsets(\Dst f\times\Dst f))
\]
is defined by the formulas:
\[
\supfun{\rho f}x=f\circ x\quad\text{and}\quad\supfun{\rho f^{-1}}y=f^{-1}\circ y
\]
where $x$ are endoreloids on $\Src f$ and $y$ are endoreloids on
$\Dst f$.\end{defn}
\begin{prop}
It is really a funcoid (if we equate reloids $x$ and $y$ with corresponding
filters on Cartesian products of sets).\end{prop}
\begin{proof}
$y\nasymp\supfun{\rho f}x\Leftrightarrow y\nasymp f\circ x\Leftrightarrow f^{-1}\circ y\nasymp x\Leftrightarrow\supfun{\rho f^{-1}}y\nasymp x$.\end{proof}
\begin{cor}
$(\rho f)^{-1}=\rho f^{-1}$.\end{cor}
\begin{defn}
It can be continued to arbitrary funcoids $x$ having destination
$\Src f$ by the formula $\supfun{\rho^{\ast}f}x=\supfun{\rho f}\id_{\Src f}\circ x=f\circ x$.\end{defn}
\begin{prop}
$\rho$ is an injection.\end{prop}
\begin{proof}
Consider $x=\id_{\Src f}$.\end{proof}
\begin{prop}
$\rho(g\circ f)=(\rho g)\circ(\rho f)$.\end{prop}
\begin{proof}
$\supfun{\rho(g\circ f)}x=g\circ f\circ x=\supfun{\rho g}\supfun{\rho f}x=(\supfun{\rho g}\circ\supfun{\rho f})x$.
Thus $\supfun{\rho(g\circ f)}=\supfun{\rho g}\circ\supfun{\rho f}=\supfun{(\rho g)\circ(\rho f)}$
and so $\rho(g\circ f)=(\rho g)\circ(\rho f)$.\end{proof}
\begin{thm}
$\rho\bigsqcup F=\bigsqcup\rsupfun{\rho}F$ for a set $F$ of reloids.\end{thm}
\begin{proof}
It's enough to prove $\rsupfun{\rho\bigsqcup F}X=\rsupfun{\bigsqcup\rsupfun{\rho}F}X$
for a set $X$.
Really,
\begin{align*}
\rsupfun{\rho\bigsqcup F}X & =\\
\supfun{\rho\bigsqcup F}\uparrow X & =\\
\bigsqcup F\circ\uparrow X & =\\
\bigsqcup\setcond{f\circ\uparrow X}{f\in F} & =\\
\bigsqcup\setcond{\supfun{\rho f}\uparrow X}{f\in F} & =\\
\supfun{\bigsqcup\setcond{\rho f}{f\in F}}X & =\\
\rsupfun{\bigsqcup\rsupfun{\rho}F}X.
\end{align*}
\end{proof}
\begin{conjecture}
$\rho\bigsqcap F=\bigsqcap\rsupfun{\rho}F$ for a set $F$ of reloids.\end{conjecture}
\begin{prop}
$\rho1_{A}^{\mathsf{RLD}}=1_{\subsets(A\times A)}^{\mathsf{FCD}}$.\end{prop}
\begin{proof}
$\supfun{\rho 1_{A}^{\mathsf{RLD}}}x=1_{A}^{\mathsf{RLD}}\circ x=x=\supfun{1_{\subsets(A\times A)}^{\mathsf{FCD}}}x$.
\end{proof}
We can try to develop further theory by applying embedding of reloids
into funcoids for researching of properties of reloids.
\begin{thm}
Reloid $f$ is monovalued iff funcoid $\rho f$ is monovalued.\end{thm}
\begin{proof}
~
\begin{align*}
\rho f\text{ is monovalued} & \Leftrightarrow\\
(\rho f)\circ(\rho f)^{-1}\sqsubseteq1_{\Dst\rho f} & \Leftrightarrow\\
\rho(f\circ f^{-1})\sqsubseteq1_{\Dst\rho f} & \Leftrightarrow\\
\rho(f\circ f^{-1})\sqsubseteq1_{\subsets(\Dst f\times\Dst f)}^{\mathsf{FCD}} & \Leftrightarrow\\
\rho(f\circ f^{-1})\sqsubseteq\rho1_{\Dst f}^{\mathsf{RLD}} & \Leftrightarrow\\
f\circ f^{-1}\sqsubseteq1_{\Dst f}^{\mathsf{RLD}} & \Leftrightarrow\\
f\text{ is monovalued}.
\end{align*}
\end{proof}