-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-pf-funcoids.tex
2119 lines (1953 loc) · 106 KB
/
chap-pf-funcoids.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{\label{pf-funcoids}Pointfree funcoids}
This chapter is based on \cite{pointfree}.
This is a routine chapter. There is almost nothing creative here.
I just generalize theorems about funcoids to the maximum extent for
\emph{pointfree funcoids} (defined below) preserving the proof idea.
The main idea behind this chapter is to find weakest theorem conditions
enough for the same theorem statement as for above theorems for funcoids.
For these who know pointfree topology: Pointfree topology notions
of frames and locales is a non-trivial generalization of topological
spaces. Pointfree funcoids are different: I just replace the set of
filters on a set with an arbitrary poset, this readily gives the definition
of \emph{pointfree funcoid}, almost no need of creativity here.
Pointfree funcoids are used in the below definitions of products of
funcoids.
\section{Definition}
\begin{defn}
\index{funcoid!pointfree}\emph{Pointfree funcoid} is a quadruple
$(\mathfrak{A},\mathfrak{B},\alpha,\beta)$ where~$\mathfrak{A}$
and~$\mathfrak{B}$ are posets, $\alpha\in\mathfrak{B}^{\mathfrak{A}}$
and $\beta\in\mathfrak{A}^{\mathfrak{B}}$ such that
\[
\forall x\in\mathfrak{A},y\in\mathfrak{B}:(y\nasymp\alpha x\Leftrightarrow x\nasymp\beta y).
\]
\end{defn}
\begin{defn}
\index{funcoid!pointfree!source}\index{funcoid!pointfree!destination}The
\emph{source} $\Src(\mathfrak{A},\mathfrak{B},\alpha,\beta)=\mathfrak{A}$
and \emph{destination} $\Dst(\mathfrak{A},\mathfrak{B},\alpha,\beta)=\mathfrak{B}$
for every pointfree funcoid $(\mathfrak{A},\mathfrak{B},\alpha,\beta)$.
\end{defn}
To every funcoid $(A,B,\alpha,\beta)$ corresponds pointfree funcoid
$(\subsets A,\subsets B,\alpha,\beta)$. Thus pointfree funcoids are
a generalization of funcoids.
\begin{defn}
I will denote $\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$ the set
of pointfree funcoids from $\mathfrak{A}$ to $\mathfrak{B}$ (that
is with source $\mathfrak{A}$ and destination $\mathfrak{B}$), for
every posets $\mathfrak{A}$ and $\mathfrak{B}$.
$\supfun{(\mathfrak{A},\mathfrak{B},\alpha,\beta)}\eqdef\alpha$ for
every pointfree funcoid $(\mathfrak{A},\mathfrak{B},\alpha,\beta)$.
\end{defn}
\begin{defn}
$(\mathfrak{A},\mathfrak{B},\alpha,\beta)^{-1}=(\mathfrak{B},\mathfrak{A},\beta,\alpha)$
for every pointfree funcoid $(\mathfrak{A},\mathfrak{B},\alpha,\beta)$.\end{defn}
\begin{prop}
If $f$ is a pointfree funcoid then $f^{-1}$ is also a pointfree
funcoid.\end{prop}
\begin{proof}
It follows from symmetry in the definition of pointfree funcoid.\end{proof}
\begin{obvious}
$(f^{-1})^{-1}=f$ for every pointfree funcoid $f$.\end{obvious}
\begin{defn}
The relation $\suprel f\in\subsets(\Src f\times\Dst f)$ is defined
by the formula (for every pointfree funcoid $f$ and $x\in\Src f$,
$y\in\Dst f$)
\[
x\suprel fy\eqdef y\nasymp\supfun fx.
\]
\end{defn}
\begin{obvious}
$x\suprel fy\Leftrightarrow y\nasymp\supfun fx\Leftrightarrow x\nasymp\supfun{f^{-1}}y$
for every pointfree funcoid $f$ and $x\in\Src f$, $y\in\Dst f$.
\end{obvious}
\begin{obvious}
$\suprel{f^{-1}}=\suprel f^{-1}$ for every pointfree funcoid $f$.\end{obvious}
\begin{thm}
\label{one-funcoid}Let $\mathfrak{A}$ and $\mathfrak{B}$ be posets.
Then:
\begin{enumerate}
\item \label{pf-fun-one}If $\mathfrak{A}$ is separable, for given value
of $\supfun f$ there exists no more than one $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$.
\item \label{pf-rel-one}If $\mathfrak{A}$ and $\mathfrak{B}$ are separable,
for given value of $\suprel f$ there exists no more than one $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$.
\end{enumerate}
\end{thm}
\begin{proof}
Let $f,g\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$.
\begin{widedisorder}
\item [{\ref{pf-fun-one}}] Let $\supfun f=\supfun g$. Then for every
$x\in\mathfrak{A}$, $y\in\mathfrak{B}$ we have
\[
x\nasymp\supfun{f^{-1}}y\Leftrightarrow y\nasymp\supfun fx\Leftrightarrow y\nasymp\supfun gx\Leftrightarrow x\nasymp\supfun{g^{-1}}y
\]
and thus by separability of $\mathfrak{A}$ we have $\supfun{f^{-1}}y=\supfun{g^{-1}}y$
that is $\supfun{f^{-1}}=\supfun{g^{-1}}$ and so $f=g$.
\item [{\ref{pf-rel-one}}] Let $\suprel f=\suprel g$. Then for every
$x\in\mathfrak{A}$, $y\in\mathfrak{B}$ we have
\[
x\nasymp\supfun{f^{-1}}y\Leftrightarrow x\suprel fy\Leftrightarrow x\suprel gy\Leftrightarrow x\nasymp\supfun{g^{-1}}y
\]
and thus by separability of $\mathfrak{A}$ we have $\supfun{f^{-1}}y=\supfun{g^{-1}}y$
that is $\supfun{f^{-1}}=\supfun{g^{-1}}$. Similarly we have $\supfun{f}=\supfun{g}$.
Thus $f=g$.
\end{widedisorder}
\end{proof}
\begin{prop}
\label{pfcd-zero}If $\Src f$ and $\Dst f$ have least elements,
then $\supfun f\bot^{\Src f}=\bot^{\Dst f}$ for every pointfree funcoid
$f$.\end{prop}
\begin{proof}
$y\nasymp\supfun f\bot^{\Src f}\Leftrightarrow\bot^{\Src f}\nasymp\supfun{f^{-1}}y\Leftrightarrow0$
for every $y\in\Dst f$. Thus $\supfun f\bot^{\Src f}\asymp\supfun f\bot^{\Src f}$.
So $\supfun f\bot^{\Src f}=\bot^{\Dst f}$.\end{proof}
\begin{prop}
\label{pfcd-mono}If $\Dst f$ is strongly separable then
$\supfun f$ is a monotone function (for a pointfree funcoid $f$).\end{prop}
\begin{proof}
~
\begin{align*}
a\sqsubseteq b & \Rightarrow\\
\forall x\in\Dst f:(a\nasymp\supfun{f^{-1}}x\Rightarrow b\nasymp\supfun{f^{-1}}x) & \Rightarrow\\
\forall x\in\Dst f:(x\nasymp\supfun fa\Rightarrow x\nasymp\supfun fb) & \Leftrightarrow\\
\fullstar\supfun fa\subseteq\fullstar\supfun fb & \Rightarrow\\
\supfun fa\sqsubseteq\supfun fb.
\end{align*}
\end{proof}
\begin{thm}
\label{pf-dist-func}Let $f$ be a pointfree funcoid from a starrish
join-semilattice $\Src f$ to a separable starrish join-semilattice
$\Dst f$. Then $\supfun f(i\sqcup j)=\supfun fi\sqcup\supfun fj$
for every $i,j\in\Src f$.\end{thm}
\begin{proof}
~
\begin{align*}
\fullstar\supfun f(i\sqcup j) & =\\
\setcond{y\in\Dst f}{y\nasymp\supfun f(i\sqcup j)} & =\\
\setcond{y\in\Dst f}{i\sqcup j\nasymp\supfun{f^{-1}}y} & =\\
\setcond{y\in\Dst f}{i\nasymp\supfun{f^{-1}}y\lor j\nasymp\supfun{f^{-1}}y} & =\\
\setcond{y\in\Dst f}{y\nasymp\supfun fi\lor y\nasymp\supfun fj} & =\\
\setcond{y\in\Dst f}{y\nasymp\supfun fi\sqcup\supfun fj} & =\\
\fullstar(\supfun fi\sqcup\supfun fj).
\end{align*}
Thus $\supfun f(i\sqcup j)=\supfun fi\sqcup\supfun fj$ by separability.\end{proof}
\begin{prop}
\label{pf-join-arg}Let $f$ be a pointfree funcoid. Then:\end{prop}
\begin{enumerate}
\item \label{pf-f-join-y}$k\suprel fi\sqcup j\Leftrightarrow k\suprel fi\lor k\suprel fj$
for every $i,j\in\Dst f$, $k\in\Src f$ if $\Dst f$ is a starrish
join-semilattice.
\item \label{pf-f-join-x}$i\sqcup j\suprel fk\Leftrightarrow i\suprel fk\lor j\suprel fk$
for every $i,j\in\Src f$, $k\in\Dst f$ if $\Src f$ is a starrish
join-semilattice.\end{enumerate}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{pf-f-join-y}}] $k\suprel fi\sqcup j\Leftrightarrow i\sqcup j\nasymp\supfun fk\Leftrightarrow i\nasymp\supfun fk\lor j\nasymp\supfun fk\Leftrightarrow k\suprel fi\lor k\suprel fj$.
\item [{\ref{pf-f-join-x}}] Similar.
\end{widedisorder}
\end{proof}
\section{Composition of pointfree funcoids}
\begin{defn}
\index{funcoid!pointfree!composition}\emph{Composition} of pointfree
funcoids is defined by the formula
\[
(\mathfrak{B},\mathfrak{C},\alpha_{2},\beta_{2})\circ(\mathfrak{A},\mathfrak{B},\alpha_{1},\beta_{1})=(\mathfrak{A},\mathfrak{C},\alpha_{2}\circ\alpha_{1},\beta_{1}\circ\beta_{2}).
\]
\end{defn}
\begin{defn}
\index{funcoid!pointfree!composable}I will call funcoids $f$ and
$g$ \emph{composable} when $\Dst f=\Src g$.\end{defn}
\begin{prop}
If $f$, $g$ are composable pointfree funcoids then $g\circ f$ is
pointfree funcoid.\end{prop}
\begin{proof}
Let $f=(\mathfrak{A},\mathfrak{B},\alpha_{1},\beta_{1})$, $g=(\mathfrak{B},\mathfrak{C},\alpha_{2},\beta_{2})$.
For every $x,y\in\mathfrak{A}$ we have
\[
y\nasymp(\alpha_{2}\circ\alpha_{1})x\Leftrightarrow y\nasymp\alpha_{2}\alpha_{1}x\Leftrightarrow\alpha_{1}x\nasymp\beta_{2}y\Leftrightarrow x\nasymp\beta_{1}\beta_{2}y\Leftrightarrow x\nasymp(\beta_{1}\circ\beta_{2})y.
\]
So $(\mathfrak{A},\mathfrak{C},\alpha_{2}\circ\alpha_{1},\beta_{1}\circ\beta_{2})$
is a pointfree funcoid.\end{proof}
\begin{obvious}
$\langle g\circ f\rangle=\langle g\rangle\circ\langle f\rangle$ for
every composable pointfree funcoids~$f$ and~$g$.\end{obvious}
\begin{thm}
$(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ for every composable pointfree
funcoids~$f$ and~$g$.\end{thm}
\begin{proof}
~
\begin{gather*}
\supfun{(g\circ f)^{-1}}=\supfun{f^{-1}}\circ\supfun{g^{-1}}=\supfun{f^{-1}\circ g^{-1}};\\
\supfun{((g\circ f)^{-1})^{-1}}=\supfun{g\circ f}=\supfun{(f^{-1}\circ g^{-1})^{-1}}.
\end{gather*}
\end{proof}
\begin{prop}
$(h\circ g)\circ f=h\circ(g\circ f)$ for every composable pointfree
funcoids $f$, $g$, $h$.\end{prop}
\begin{proof}
$\supfun{(h\circ g)\circ f}=\supfun{h\circ g}\circ\supfun f=\supfun h\circ\supfun g\circ\supfun f=\supfun h\circ\supfun{g\circ f}=\supfun{h\circ(g\circ f)}$;
\begin{multline*}
\supfun{((h\circ g)\circ f)^{-1}}=\supfun{f^{-1}\circ(h\circ g)^{-1}}=\supfun{f^{-1}\circ g^{-1}\circ h^{-1}}=\\
\supfun{(g\circ f)^{-1}\circ h^{-1}}=\supfun{(h\circ(g\circ f))^{-1}}.
\end{multline*}
\end{proof}
\begin{xca}
Generalize section~\ref{fcd-rel-another} for pointfree funcoids.
\end{xca}
\section{Pointfree funcoid as continuation}
\begin{prop}
Let $f$ be a pointfree funcoid. Then for every $x\in\Src f$, $y\in\Dst f$
we have
\begin{enumerate}
\item If $(\Src f,\mathfrak{Z})$ is a filtrator with separable core then
$x\suprel fy\Leftrightarrow\forall X\in\up^{\mathfrak{Z}}x:X\suprel fy$.
\item If $(\Dst f,\mathfrak{Z})$ is a filtrator with separable core then
$x\suprel fy\Leftrightarrow\forall Y\in\up^{\mathfrak{Z}}y:x\suprel fY$.
\end{enumerate}
\end{prop}
\begin{proof}
We will prove only the second because the first is similar.
\[
x\suprel fy\Leftrightarrow y\nasymp^{\Dst f}\supfun fx\Leftrightarrow\forall Y\in\up^{\mathfrak{Z}}y:Y\nasymp\supfun fx\Leftrightarrow\forall Y\in\up^{\mathfrak{Z}}y:x\suprel fY.
\]
\end{proof}
\begin{cor}
\label{pf-relatom-both}Let $f$ be a pointfree funcoid and $(\Src f,\mathfrak{Z}_{0})$,
$(\Dst f,\mathfrak{Z}_{1})$ be filtrators with separable core. Then
\[
x\suprel fy\Leftrightarrow\forall X\in\up^{\mathfrak{Z}_{0}}x,Y\in\up^{\mathfrak{Z}_{1}}y:X\suprel fY.
\]
\end{cor}
\begin{proof}
Apply the proposition twice.\end{proof}
\begin{thm}
\label{pf-supfun-up}Let $f$ be a pointfree funcoid. Let $(\Src f,\mathfrak{Z}_{0})$
be a binarily meet-closed filtrator with separable core which is a
meet-semilattice and $\forall x\in\Src f:\up^{\mathfrak{Z}_{0}}x\neq\emptyset$
and $(\Dst f,\mathfrak{Z}_{1})$ be a primary filtrator over a boolean
lattice.
\[
\supfun fx=\bigsqcap^{\Dst f}\rsupfun{\supfun f}\up^{\mathfrak{Z}_{0}}x.
\]
\end{thm}
\begin{proof}
By the previous proposition for every $y\in\Dst f$:
\[
y\nasymp^{\Dst f}\supfun fx\Leftrightarrow x\suprel fy\Leftrightarrow\forall X\in\up^{\mathfrak{Z}_{0}}x:X\suprel fy\Leftrightarrow\forall X\in\up^{\mathfrak{Z}_{0}}x:y\nasymp^{\Dst f}\supfun fX.
\]
Let's denote $W=\setcond{y\sqcap^{\Dst f}\supfun fX}{X\in\up^{\mathfrak{Z}_{0}}x}$.
We will prove that $W$ is a generalized filter base over $\mathfrak{Z}_{1}$.
To prove this enough to show that $V=\setcond{\supfun fX}{X\in\up^{\mathfrak{Z}_{0}}x}$
is a generalized filter base.
Let $\mathcal{P},\mathcal{Q}\in V$. Then $\mathcal{P}=\supfun fA$,
$\mathcal{Q}=\supfun fB$ where $A,B\in\up^{\mathfrak{Z}_{0}}x$;
$A\sqcap^{\mathfrak{Z}_{0}}B\in\up^{\mathfrak{Z}_{0}}x$
(used the fact that it is a binarily meet-closed and theorem \ref{up-filt-crit})
and $\mathcal{R}\sqsubseteq\mathcal{P}\sqcap^{\Dst f}\mathcal{Q}$
for $\mathcal{R}=\langle f\rangle(A\sqcap^{\mathfrak{Z}_{0}}B)\in V$
because $\Dst f$ is strongly separable by proposition~\ref{filt-is-sep}. So $V$
is a generalized filter base and thus $W$ is a generalized filter
base.
$\bot^{\Dst f}\notin W\Leftrightarrow\bot^{\Dst f}\notin\bigsqcap^{\Dst f}W$
by theorem \ref{genbase-main}. That is
\[
\forall X\in\up^{\mathfrak{Z}_{0}}x:y\sqcap^{\Dst f}\supfun fX\ne\bot^{\Dst f}\Leftrightarrow y\sqcap^{\Dst f}\bigsqcap^{\Dst f}\rsupfun{\supfun f}\up^{\mathfrak{Z}_{0}}x\ne\bot^{\Dst f}.
\]
Comparing with the above,
\[
y\sqcap^{\Dst f}\supfun fx\ne\bot^{\Dst f}\Leftrightarrow y\sqcap^{\Dst f}\bigsqcap^{\Dst f}\rsupfun{\supfun f}\up^{\mathfrak{Z}_{0}}x\ne\bot^{\Dst f}.
\]
So $\supfun fx=\bigsqcap^{\Dst f}\rsupfun{\supfun f}\up^{\mathfrak{Z}_{0}}x$
because $\Dst f$ is separable (proposition~\ref{filt-is-sep} and the
fact that $\mathfrak{Z}_{1}$ is a boolean lattice).\end{proof}
\begin{thm}
\label{pf-cont}Let $(\mathfrak{A},\mathfrak{Z}_{0})$ and $(\mathfrak{B},\mathfrak{Z}_{1})$
be primary filtrators over boolean lattices.
\begin{enumerate}
\item \label{pf-cont-f}A function $\alpha\in\mathfrak{B}^{\mathfrak{Z}_{0}}$
conforming to the formulas (for every $I,J\in\mathfrak{Z}_{0}$)
\[
\alpha\bot^{\mathfrak{Z}_{0}}=\bot^{\mathfrak{B}},\quad\alpha(I\sqcup J)=\alpha I\sqcup\alpha J
\]
can be continued to the function $\supfun f$ for a unique $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$;
\begin{equation}
\supfun f\mathcal{X}=\bigsqcap^{\mathfrak{B}}\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}\label{pf-alpha-filter}
\end{equation}
for every $\mathcal{X}\in\mathfrak{A}$.
\item \label{pf-cont-r}A relation $\delta\in\subsets(\mathfrak{Z}_{0}\times\mathfrak{Z}_{1})$
conforming to the formulas (for every $I,J,K\in\mathfrak{Z}_{0}$
and $I',J',K'\in\mathfrak{Z}_{1}$)
\begin{equation}
\begin{aligned}\lnot(\bot^{\mathfrak{Z}_{0}}\mathrel\delta I') & ,\quad I\sqcup J\mathrel\delta K'\Leftrightarrow I\mathrel\delta K'\lor J\mathrel\delta K',\\
\lnot(I\mathrel\delta\bot^{\mathfrak{Z}_{1}}) & ,\quad K\mathrel\delta I'\sqcup J'\Leftrightarrow K\mathrel\delta I'\lor K\mathrel\delta J'
\end{aligned}
\label{pf-delta-props}
\end{equation}
can be continued to the relation $\suprel f$ for a unique $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$;
\begin{equation}
\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\forall X\in\up^{\mathfrak{Z}_{0}}\mathcal{X},Y\in\up^{\mathfrak{Z}_{1}}\mathcal{Y}:X\mathrel\delta Y\label{pf-suprel-delta}
\end{equation}
for every $\mathcal{X}\in\mathfrak{A}$, $\mathcal{Y}\in\mathfrak{B}$.
\end{enumerate}
\end{thm}
\begin{proof}
Existence of no more than one such pointfree funcoids and formulas
(\ref{pf-alpha-filter}) and (\ref{pf-suprel-delta}) follow from
two previous theorems.
\begin{widedisorder}
\item [{\ref{pf-cont-r}}] $\setcond{Y\in\mathfrak{Z}_{1}}{X\mathrel\delta Y}$
is obviously a free star for every $X\in\mathfrak{Z}_{0}$. By properties
of filters on boolean lattices, there exist a unique filter $\alpha X$
such that $\corestar(\alpha X)=\setcond{Y\in\mathfrak{Z}_{1}}{X\mathrel\delta Y}$
for every $X\in\mathfrak{Z}_{0}$. Thus $\alpha\in\mathfrak{B}^{\mathfrak{Z}_{0}}$.
Similarly it can be defined $\beta\in\mathfrak{A}^{\mathfrak{Z}_{1}}$
by the formula $\corestar(\beta Y)=\setcond{X\in\mathfrak{Z}_{0}}{X\mathrel\delta Y}$.
Let's continue the functions $\alpha$ and $\beta$ to $\alpha'\in\mathfrak{B}^{\mathfrak{A}}$
and $\beta'\in\mathfrak{A}^{\mathfrak{B}}$ by the formulas
\[
\alpha'\mathcal{X}=\bigsqcap^{\mathfrak{B}}\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}\quad\text{and}\quad\beta'\mathcal{Y}=\bigsqcap^{\mathfrak{A}}\rsupfun{\beta}\up^{\mathfrak{Z}_{1}}\mathcal{Y}
\]
and $\delta$ to $\delta'\in\subsets(\mathfrak{A}\times\mathfrak{B})$
by the formula
\[
\mathcal{X}\mathrel{\delta'}\mathcal{Y}\Leftrightarrow\forall X\in\up^{\mathfrak{Z}_{0}}\mathcal{X},Y\in\up^{\mathfrak{Z}_{1}}\mathcal{Y}:\mathcal{X}\mathrel\delta\mathcal{Y}.
\]
$\mathcal{Y}\sqcap\alpha'\mathcal{X}\ne\bot^{\mathfrak{B}}\Leftrightarrow\mathcal{Y}\sqcap\bigsqcap\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}\ne\bot^{\mathfrak{B}}\Leftrightarrow\bigsqcap\rsupfun{\mathcal{Y}\sqcap}\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}\ne\bot^{\mathfrak{B}}$.
Let's prove that
\[
W=\rsupfun{\mathcal{Y}\sqcap}\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}
\]
is a generalized filter base: To prove it is enough to show that $\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}$
is a generalized filter base.
If $\mathcal{A},\mathcal{B}\in\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}$
then exist $X_{1},X_{2}\in\up^{\mathfrak{Z}_{0}}\mathcal{X}$ such
that $\mathcal{A}=\alpha X_{1}$ and $\mathcal{B}=\alpha X_{2}$.
Then $\alpha(X_{1}\sqcap^{\mathfrak{Z}_{0}}X_{2})\in\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}$.
So $\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}$ is a generalized
filter base and thus $W$ is a generalized filter base.
By properties of generalized filter bases, $\bigsqcap\rsupfun{\mathcal{Y}\sqcap}\rsupfun{\alpha}\up^{\mathfrak{Z}_{0}}\mathcal{X}\ne\bot^{\mathfrak{B}}$
is equivalent to
\[
\forall X\in\up^{\mathfrak{Z}_{0}}\mathcal{X}:\mathcal{Y}\sqcap\alpha X\ne\bot^{\mathfrak{B}},
\]
what is equivalent to
\begin{align*}
\forall X\in\up^{\mathfrak{Z}_{0}}\mathcal{X},Y\in\up^{\mathfrak{Z}_{1}}\mathcal{Y}:Y\sqcap^{\mathfrak{B}}\alpha X\ne\bot^{\mathfrak{B}} & \Leftrightarrow\\
\forall X\in\up^{\mathfrak{Z}_{0}}\mathcal{X},Y\in\up^{\mathfrak{Z}_{1}}\mathcal{Y}:Y\in\corestar(\alpha X) & \Leftrightarrow\\
\forall X\in\up^{\mathfrak{Z}_{0}}\mathcal{X},Y\in\up^{\mathfrak{Z}_{1}}\mathcal{Y}:X\mathrel\delta Y.
\end{align*}
Combining the equivalencies we get $\mathcal{Y}\sqcap\alpha'\mathcal{X}\ne\bot^{\mathfrak{B}}\Leftrightarrow\mathcal{X}\mathrel{\delta'}\mathcal{Y}$.
Analogously $\mathcal{X}\sqcap\beta'\mathcal{Y}\ne\bot^{\mathfrak{A}}\Leftrightarrow\mathcal{X}\mathrel{\delta'}\mathcal{Y}$.
So $\mathcal{Y}\sqcap\alpha'\mathcal{X}\ne\bot^{\mathfrak{B}}\Leftrightarrow\mathcal{X}\sqcap\beta'\mathcal{Y}\ne\bot^{\mathfrak{A}}$,
that is $(\mathfrak{A},\mathfrak{B},\alpha',\beta')$ is a pointfree
funcoid. From the formula $\mathcal{Y}\sqcap\alpha'\mathcal{X}\ne\bot^{\mathfrak{B}}\Leftrightarrow\mathcal{X}\mathrel{\delta'}\mathcal{Y}$
it follows that $\suprel{(\mathfrak{A},\mathfrak{B},\alpha',\beta')}$
is a continuation of $\delta$.
\item [{\ref{pf-cont-f}}] Let define the relation $\delta\in\subsets(\mathfrak{Z}_{0}\times\mathfrak{Z}_{1})$
by the formula $X\mathrel{\delta}Y\Leftrightarrow Y\sqcap^{\mathfrak{B}}\alpha X\neq\bot^{\mathfrak{B}}$.
That $\neg(\bot^{\mathfrak{Z}_{0}}\mathrel{\delta}I')$ and $\neg(I\mathrel{\delta}\bot^{\mathfrak{Z}_{1}})$
is obvious. We have
\begin{align*}
K\mathrel{\delta}I'\sqcup^{\mathfrak{Z}_{1}}J' & \Leftrightarrow\\
(I'\sqcup^{\mathfrak{Z}_{1}}J')\sqcap^{\mathfrak{B}}\alpha K\neq\bot^{\mathfrak{B}} & \Leftrightarrow\\
(I'\sqcup^{\mathfrak{B}}J')\sqcap\alpha K\neq\bot^{\mathfrak{B}} & \Leftrightarrow\\
(I'\sqcap^{\mathfrak{B}}\alpha K)\sqcup(J'\sqcap^{\mathfrak{B}}\alpha K)\neq\bot^{\mathfrak{B}} & \Leftrightarrow\\
I'\sqcap^{\mathfrak{B}}\alpha K\neq\bot^{\mathfrak{B}}\vee J'\sqcap^{\mathfrak{B}}\alpha K\neq\bot^{\mathfrak{B}} & \Leftrightarrow\\
K\mathrel{\delta}I'\vee K\mathrel{\delta}J'
\end{align*}
and
\begin{align*}
I\sqcup^{\mathfrak{Z}_{0}}J\mathrel{\delta}K' & \Leftrightarrow\\
K'\sqcap^{\mathfrak{B}}\alpha(I\sqcup^{\mathfrak{Z}_{0}}J)\neq\bot^{\mathfrak{B}} & \Leftrightarrow\\
K'\sqcap^{\mathfrak{B}}(\alpha I\sqcup\alpha J)\neq\bot^{\mathfrak{B}} & \Leftrightarrow\\
(K'\sqcap^{\mathfrak{B}}\alpha I)\sqcup(K'\sqcap^{\mathfrak{B}}\alpha J)\neq\bot^{\mathfrak{B}} & \Leftrightarrow\\
K'\sqcap^{\mathfrak{B}}\alpha I\neq\bot^{\mathfrak{B}}\vee K'\sqcap^{\mathfrak{B}}\alpha J\neq\bot^{\mathfrak{B}} & \Leftrightarrow\\
I\mathrel{\delta}K'\vee J\mathrel{\delta}K'.
\end{align*}
That is the formulas (\ref{pf-delta-props}) are true.
Accordingly the above $\delta$ can be continued to the relation $\suprel f$
for some $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$.
$\forall X\in\mathfrak{Z}_{0},Y\in\mathfrak{Z}_{1}:(Y\sqcap^{\mathfrak{B}}\supfun fX\neq\bot^{\mathfrak{B}}\Leftrightarrow X\suprel fY\Leftrightarrow Y\sqcap^{\mathfrak{B}}\alpha X\neq\bot^{\mathfrak{B}})$,
consequently $\forall X\in\mathfrak{Z}_{0}:\alpha X=\supfun fX$ because
our filtrator is with separable core. So $\supfun f$ is a continuation
of $\alpha$.
\end{widedisorder}
\end{proof}
\begin{thm}
Let $(\mathfrak{A},\mathfrak{Z}_{0})$ and $(\mathfrak{B},\mathfrak{Z}_{1})$
be primary filtrators over boolean lattices. If $\alpha\in\mathfrak{B}^{\mathfrak{Z}_{0}}$,
$\beta\in\mathfrak{A}^{\mathfrak{Z}_{1}}$ are functions such that
$Y\nasymp\alpha X\Leftrightarrow X\nasymp\beta Y$ for every $X\in\mathfrak{Z}_{0}$,
$Y\in\mathfrak{Z}_{1}$, then there exists exactly one pointfree funcoid $f:\mathfrak{A}\rightarrow\mathfrak{B}$
such that $\supfun{f}|_{\mathfrak{Z}_0}=\alpha$, $\supfun{f^{-1}}|_{\mathfrak{Z}_1}=\beta$.\end{thm}
\begin{proof}
Prove $\alpha(I\sqcup J)=\alpha I\sqcup\alpha J$. Really, $Y\nasymp\alpha(I\sqcup J)\Leftrightarrow I\sqcup J\nasymp\beta Y\Leftrightarrow I\nasymp\beta Y\vee J\nasymp\beta Y\Leftrightarrow Y\nasymp\alpha I\vee Y\nasymp\alpha J\Leftrightarrow Y\nasymp\alpha I\sqcup\alpha J$.
So $\alpha(I\sqcup J)=\alpha I\sqcup\alpha J$ by star-separability.
Similarly $\beta(I\sqcup J)=\beta I\sqcup\beta J$.
Thus by the theorem above there exists a pointfree funcoid $f$ such that
$\supfun{f}|_{\mathfrak{Z}_0}=\alpha$, $\supfun{f^{-1}}|_{\mathfrak{Z}_1}=\beta$.
That this pointfree funcoid is unique, follows from the above.\end{proof}
\begin{prop}
Let $(\Src f,\mathfrak{Z}_{0})$ be a primary filtrator over a bounded
distributive lattice and $(\Dst f,\mathfrak{Z}_{1})$ be a primary
filtrator over boolean lattice. If $S$ is a generalized filter base
on $\Src f$ then $\supfun f\bigsqcap^{\Src f}S=\bigsqcap^{\Dst f}\rsupfun{\supfun f}S$
for every pointfree funcoid $f$.\end{prop}
\begin{proof}
First the meets $\bigsqcap^{\Src f}S$ and $\bigsqcap^{\Dst f}\rsupfun{\supfun f}S$
exist by corollary \ref{filt-is-complete}.
$(\Src f,\mathfrak{Z}_{0})$ is a binarily meet-closed filtrator by
corollary~\ref{f-meet-closed} and with separable core by theorem
\ref{when-sep-core}; thus we can apply theorem \ref{pf-supfun-up}
($\up x\neq\emptyset$ is obvious).
$\supfun f\bigsqcap^{\Src f}S\sqsubseteq\supfun fX$ for every $X\in S$
because $\Dst f$ is strongly separable by proposition~\ref{filt-is-sep} and thus
$\supfun f\bigsqcap^{\Src f}S\sqsubseteq\bigsqcap^{\Dst f}\rsupfun{\supfun f}S$.
Taking into account properties of generalized filter bases:
\begin{align*}
\supfun f\bigsqcap^{\Src f}S & =\\
\bigsqcap^{\Dst f}\rsupfun{\supfun f}\up\bigsqcap S & =\\
\bigsqcap^{\Dst f}\rsupfun{\supfun f}\setcond X{\exists\mathcal{P}\in S:X\in\up\mathcal{P}} & =\\
\bigsqcap^{\Dst f}\setcond{\rsupfun fX}{\exists\mathcal{P}\in S:X\in\up\mathcal{P}} & \sqsupseteq\text{ (because \ensuremath{\Dst f} is a strongly separable poset)}\\
\bigsqcap^{\Dst f}\setcond{\supfun f\mathcal{P}}{\mathcal{P}\in S} & =\\
\bigsqcap^{\Dst f}\rsupfun{\supfun f}S.
\end{align*}
\end{proof}
\begin{prop}
$\mathcal{X}\suprel f\bigsqcap S\Leftrightarrow\exists\mathcal{Y}\in S:\mathcal{X}\suprel f\mathcal{Y}$
if $f$ is a pointfree funcoid, $\Dst f$ is a meet-semilattice with
least element and $S$ is a generalized filter base on $\Dst f$.\end{prop}
\begin{proof}
~
\begin{multline*}
\mathcal{X}\suprel f\bigsqcap S\Leftrightarrow\bigsqcap S\sqcap\supfun f\mathcal{X}\neq\bot\Leftrightarrow\bigsqcap\langle\langle f\rangle\mathcal{X}\sqcap\rangle^{\ast}S\neq\bot\Leftrightarrow\\
\text{(by properties of generalized filter bases)}\Leftrightarrow\\
\exists\mathcal{Y}\in\langle\supfun f\mathcal{X}\sqcap\rangle^{\ast}S:\mathcal{Y}\neq\bot\Leftrightarrow\exists\mathcal{Y}\in S:\langle f\rangle\mathcal{X}\sqcap\mathcal{Y}\neq\bot\Leftrightarrow\exists\mathcal{Y}\in S:\mathcal{X}\suprel f\mathcal{Y}.
\end{multline*}
\end{proof}
\begin{thm}
\label{pfcd-as-func}A function $\varphi:\mathfrak{A}\rightarrow\mathfrak{B}$,
where $(\mathfrak{A},\mathfrak{Z}_{0})$ and~$(\mathfrak{B},\mathfrak{Z}_{1})$
are primary filtrators over boolean lattices, preserves finite joins
(including nullary joins) and filtered meets iff there exists a pointfree
funcoid $f$ such that $\supfun f=\varphi$.\end{thm}
\begin{proof}
Backward implication follows from above.
Let $\psi=\varphi|_{\mathfrak{Z}_{0}}$. Then $\psi$ preserves bottom
element and binary joins. Thus there exists a funcoid $f$ such that
$\rsupfun f=\psi$.
It remains to prove that $\supfun f=\varphi$.
Really, $\supfun f\mathcal{X}=\bigsqcap\rsupfun{\supfun f}\up\mathcal{X}=\bigsqcap\rsupfun{\psi}\up\mathcal{X}=\bigsqcap\rsupfun{\varphi}\up\mathcal{X}=\varphi\bigsqcap\up\mathcal{X}=\varphi\mathcal{X}$
for every $\mathcal{X}\in\mathscr{F}(\Src f)$.\end{proof}
\begin{cor}
Pointfree funcoids $f$ from a lattice $\mathfrak{A}$ of fitlters
on a boolean lattice to a lattice $\mathfrak{B}$ of fitlters
on a boolean lattice bijectively correspond by the formula
$\langle f\rangle=\varphi$ to functions $\varphi:\mathfrak{A}\rightarrow\mathfrak{B}$
preserving finite joins and filtered meets.\end{cor}
\begin{thm}
The set of pointfree funcoids between sets of filters on boolean
lattices is a co-frame.\end{thm}
\begin{proof}
Theorems~\ref{pf-cont} and~\ref{frame-main}.
\end{proof}
\section{The order of pointfree funcoids}
\begin{defn}
\index{funcoid!pointfree!order}The order of pointfree funcoids $\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
is defined by the formula:
\[
f\sqsubseteq g\Leftrightarrow\forall x\in\mathfrak{A}:\supfun fx\sqsubseteq\supfun gx\land\forall y\in\mathfrak{B}:\supfun{f^{-1}}y\sqsubseteq\supfun{g^{-1}}y.
\]
\end{defn}
\begin{prop}
It is really a partial order on the set $\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$.\end{prop}
\begin{proof}
~
\begin{description}
\item [{Reflexivity}] Obvious.
\item [{Transitivity}] It follows from transitivity of the order relations
on $\mathfrak{A}$ and~$\mathfrak{B}$.
\item [{Antisymmetry}] It follows from antisymmetry of the order relations
on $\mathfrak{A}$ and~$\mathfrak{B}$.
\end{description}
\end{proof}
\begin{rem}
It is enough to define order of pointfree funcoids on every set $\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
where $\mathfrak{A}$ and $\mathfrak{B}$ are posets. We do not need
to compare pointfree funcoids with different sources or destinations.\end{rem}
\begin{obvious}
$f\sqsubseteq g\Rightarrow\suprel f\subseteq\suprel g$ for every
$f,g\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$ for every posets
$\mathfrak{A}$ and~$\mathfrak{B}$.\end{obvious}
\begin{thm}
\label{pf-fcd-poset}If $\mathfrak{A}$ and $\mathfrak{B}$ are separable
posets then $f\sqsubseteq g\Leftrightarrow\suprel f\subseteq\suprel g$.\end{thm}
\begin{proof}
From the theorem \ref{one-funcoid}.\end{proof}
\begin{prop}
If $\mathfrak{A}$ and $\mathfrak{B}$ have least elements, then $\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
has least element.\end{prop}
\begin{proof}
It is $(\mathfrak{A},\mathfrak{B},\mathfrak{A}\times\{\bot^{\mathfrak{B}}\},\mathfrak{B}\times\{\bot^{\mathfrak{A}}\})$.\end{proof}
\begin{thm}\label{pfcd-bound}
If $\mathfrak{A}$ and $\mathfrak{B}$ are bounded posets, then $\mathsf{pFCD}(\mathfrak{A}, \mathfrak{B})$ is bounded.
\end{thm}
\begin{proof}
That $\mathsf{pFCD} (\mathfrak{A}, \mathfrak{B})$ has least element was proved
above. I will demonstrate that $(\mathfrak{A}, \mathfrak{B}, \alpha , \beta)$
is the greatest element of $\mathsf{pFCD} (\mathfrak{A}, \mathfrak{B})$ for
\[ \alpha X = \begin{cases}
\bot^{\mathfrak{B}} & \text{if } X = \bot^{\mathfrak{A}}\\
\top^{\mathfrak{B}} & \text{if } X \neq \bot^{\mathfrak{A}}
\end{cases} ; \quad
\beta Y = \begin{cases}
\bot^{\mathfrak{A}} & \text{if } Y = \bot^{\mathfrak{B}}\\
\top^{\mathfrak{A}} & \text{if } Y \neq \bot^{\mathfrak{B}}
\end{cases} . \]
First prove $Y \nasymp \alpha X \Leftrightarrow X \nasymp \beta Y$.
If $\top^{\mathfrak{B}} = \bot^{\mathfrak{B}}$ then $Y \nasymp \alpha X
\Leftrightarrow Y \nasymp \bot^{\mathfrak{B}} \Leftrightarrow 0
\Leftrightarrow X \nasymp \bot^{\mathfrak{A}} \Leftrightarrow X \nasymp \beta
\bot^{\mathfrak{A}}$ (proposition~\ref{pfcd-zero}). The case $\top^{\mathfrak{A}} =
\bot^{\mathfrak{A}}$ is similar. So we can assume $\top^{\mathfrak{A}} \neq
\bot^{\mathfrak{A}}$ and $\top^{\mathfrak{B}} \neq \bot^{\mathfrak{B}}$.
Consider all variants:
\begin{description}
\item[$X = \bot^{\mathfrak{A}}$ and $Y = \bot^{\mathfrak{B}}$] $Y \nasymp
\alpha X \Leftrightarrow 0 \Leftrightarrow X \nasymp \beta Y$.
\item[$X \neq \bot^{\mathfrak{A}}$ and $Y \neq \bot^{\mathfrak{B}}$] $\alpha
X = \top^{\mathfrak{B}}$ and $\beta Y = \top^{\mathfrak{A}}$; $Y \nasymp
\alpha X \Leftrightarrow Y \nasymp \top^{\mathfrak{B}} \Leftrightarrow 1
\Leftrightarrow X \nasymp \top^{\mathfrak{A}} \Leftrightarrow X \nasymp
\beta Y$ (used that $\top^{\mathfrak{A}} \neq \bot^{\mathfrak{A}}$ and
$\top^{\mathfrak{B}} \neq \bot^{\mathfrak{B}}$).
\item[$X = \bot^{\mathfrak{A}}$ and $Y \neq \bot^{\mathfrak{B}}$] $\alpha X
= \bot^{\mathfrak{B}}$ (proposition~\ref{pfcd-zero}) and $\beta Y =
\top^{\mathfrak{A}}$; $Y \nasymp \alpha X \Leftrightarrow Y \nasymp
\bot^{\mathfrak{B}} \Leftrightarrow 0 \Leftrightarrow \bot^{\mathfrak{A}}
\nasymp \beta Y \Leftrightarrow X \nasymp \beta Y$.
\item[$X = \bot^{\mathfrak{A}}$ and $Y \neq \bot^{\mathfrak{B}}$] Similar.
\end{description}
It's easy to show that both $\alpha$ and $\beta$ are the greatest possible
components of a pointfree funcoid taking into account proposition~\ref{pfcd-zero}.
\end{proof}
\begin{thm}
\label{pf-join-core}Let $(\mathfrak{A},\mathfrak{Z}_{0})$ and $(\mathfrak{B},\mathfrak{Z}_{1})$
be primary filtrators over boolean lattices. Then for $R\in\subsets\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
and $X\in\mathfrak{Z}_{0}$, $Y\in\mathfrak{Z}_{1}$ we have:
\begin{enumerate}
\item \label{pf-join-r}$X\suprel{\bigsqcup R}Y\Leftrightarrow\exists f\in R:X\suprel fY$;
\item \label{pf-join-f}$\supfun{\bigsqcup R}X=\bigsqcup_{f\in R}\supfun fX$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{pf-join-f}}] $\alpha X\eqdef\bigsqcup_{f\in R}\supfun fX$
(by corollary \ref{filt-is-complete} all joins on $\mathfrak{B}$
exist). We have $\alpha\bot^{\mathfrak{A}}=\bot^{\mathfrak{B}}$;
\begin{align*}
\alpha(I\sqcup^{\mathfrak{Z}_{0}}J) & =\\
\bigsqcup\setcond{\supfun f(I\sqcup^{\mathfrak{Z}_{0}}J)}{f\in R} & =\\
\bigsqcup\setcond{\supfun f(I\sqcup^{\mathfrak{A}}J)}{f\in R} & =\\
\bigsqcup\setcond{\supfun fI\sqcup^{\mathfrak{B}}\supfun fJ}{f\in R} & =\\
\bigsqcup\setcond{\supfun fI}{f\in R}\sqcup^{\mathfrak{B}}\bigsqcup\setcond{\supfun fJ}{f\in R} & =\\
\alpha I\sqcup^{\mathfrak{B}}\alpha J
\end{align*}
(used theorem \ref{pf-dist-func}). By theorem \ref{pf-cont} the
function $\alpha$ can be continued to $\supfun h$ for an $h\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$.
Obviously
\begin{equation}
\forall f\in R:h\sqsupseteq f.\label{pf-fcd-bigcup-least}
\end{equation}
And $h$ is the least element of $\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
for which the condition (\ref{pf-fcd-bigcup-least}) holds. So $h=\bigsqcup R$.
\begin{widedisorder}
\item [{\ref{pf-join-r}}] ~
\begin{align*}
X\suprel{\bigsqcup R}Y & \Leftrightarrow\\
Y\sqcap^{\mathfrak{B}}\supfun{\bigsqcup R}X\ne\bot^{\mathfrak{B}} & \Leftrightarrow\\
Y\sqcap^{\mathfrak{B}}\bigsqcup\setcond{\supfun fX}{f\in R}\ne\bot^{\mathfrak{B}} & \Leftrightarrow\\
\exists f\in R:Y\sqcap^{\mathfrak{B}}\supfun fX\ne\bot^{\mathfrak{B}} & \Leftrightarrow\\
\exists f\in R:X\suprel fY
\end{align*}
(used theorem \ref{b-f-back-distr}).
\end{widedisorder}
\end{widedisorder}
\end{proof}
\begin{cor}
\label{pf-fcd-compl}If $(\mathfrak{A},\mathfrak{Z}_{0})$ and $(\mathfrak{B},\mathfrak{Z}_{1})$
are primary filtrators over boolean lattices then $\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
is a complete lattice.\end{cor}
\begin{proof}
Apply \cite{pm:complete-lattice-criteria}.\end{proof}
\begin{thm}
\label{pf-fin-join}Let $\mathfrak{A}$ and $\mathfrak{B}$ be starrish
join-semilattices. Then for $f,g\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$:
\begin{enumerate}
\item \label{pf-fin-j-f}$\supfun{f\sqcup g}x=\supfun fx\sqcup\supfun gx$
for every $x\in\mathfrak{A}$;
\item \label{pf-fin-j-r}$\suprel{f\sqcup g}=\suprel f\cup\suprel g$.
\end{enumerate}
\end{thm}
\begin{proof}
~\end{proof}
\begin{widedisorder}
\item [{\ref{pf-fin-j-f}}] Let $\alpha\mathcal{X}\eqdef\supfun fx\sqcup\supfun gx$;
$\beta\mathcal{Y}\eqdef\supfun{f^{-1}}y\sqcup\supfun{g^{-1}}y$ for
every $x\in\mathfrak{A}$, $y\in\mathfrak{B}$. Then
\begin{align*}
y\nasymp^{\mathfrak{B}}\alpha x & \Leftrightarrow\\
y\nasymp\supfun fx\lor y\nasymp\supfun gx & \Leftrightarrow\\
x\nasymp\supfun{f^{-1}}y\lor x\nasymp\supfun{g^{-1}}y & \Leftrightarrow\\
x\nasymp\supfun{f^{-1}}y\sqcup\supfun{g^{-1}}y & \Leftrightarrow\\
x\nasymp\beta y.
\end{align*}
So $h=(\mathfrak{A},\mathfrak{B},\alpha,\beta)$ is a pointfree funcoid.
Obviously $h\sqsupseteq f$ and $h\sqsupseteq g$. If $p\sqsupseteq f$
and $p\sqsupseteq g$ for some $p\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
then $\supfun px\sqsupseteq\supfun fx\sqcup\supfun gx=\supfun hx$
and $\supfun{p^{-1}}y\sqsupseteq\supfun{f^{-1}}y\sqcup\supfun{g^{-1}}y=\supfun{h^{-1}}y$
that is $p\sqsupseteq h$. So $f\sqcup g=h$.
\item [{\ref{pf-fin-j-r}}] ~
\begin{align*}
x\suprel{f\sqcup g}y & \Leftrightarrow\\
y\nasymp\supfun{f\sqcup g}x & \Leftrightarrow\\
y\nasymp\supfun fx\sqcup\supfun gx & \Leftrightarrow\\
y\nasymp\supfun fx\lor y\nasymp\supfun gx & \Leftrightarrow\\
x\suprel fy\lor x\suprel gy
\end{align*}
for every $x\in\mathfrak{A}$, $y\in\mathfrak{B}$.\end{widedisorder}
\section{Domain and range of a pointfree funcoid}
\begin{defn}
\index{funcoid!pointfree!identity}Let $\mathfrak{A}$ be a poset.
The \emph{identity pointfree funcoid} $1_{\mathfrak{A}}^{\mathsf{pFCD}}=(\mathfrak{A},\mathfrak{A},\id_{\mathfrak{A}},\id_{\mathfrak{A}})$.
\end{defn}
It is trivial that identity funcoid is really a pointfree funcoid.
Let now $\mathfrak{A}$ be a meet-semilattice.
\begin{defn}
\index{funcoid!pointfree!restricted identity}Let $a\in\mathfrak{A}$.
The \emph{restricted identity pointfree funcoid} $\id_{a}^{\mathsf{pFCD}(\mathfrak{A})}=(\mathfrak{A},\mathfrak{A},a\sqcap^{\mathfrak{A}},a\sqcap^{\mathfrak{A}})$.\end{defn}
\begin{prop}
The restricted pointfree funcoid is a pointfree funcoid.\end{prop}
\begin{proof}
We need to prove that $(a\sqcap^{\mathfrak{A}}x)\nasymp^{\mathfrak{A}}y\Leftrightarrow(a\sqcap^{\mathfrak{A}}y)\nasymp^{\mathfrak{A}}x$
what is obvious.\end{proof}
\begin{obvious}
$(\id_{a}^{\mathsf{pFCD}(\mathfrak{A})})^{-1}=\id_{a}^{\mathsf{pFCD}(\mathfrak{A})}$.
\end{obvious}
\begin{obvious}
$x\suprel{\id_{a}^{\mathsf{pFCD}(\mathfrak{A})}}y\Leftrightarrow a\nasymp^{\mathfrak{A}}x\sqcap^{\mathfrak{A}}y$
for every $x,y\in\mathfrak{A}$.\end{obvious}
\begin{defn}
\index{funcoid!pointfree!restricting}I will define \emph{restricting}
of a pointfree funcoid $f$ to an element $a\in\Src f$ by the formula
$f|_{a}\eqdef f\circ\id_{a}^{\mathsf{pFCD}(\Src f)}$.
\end{defn}
\begin{defn}
\index{funcoid!pointfree!image}Let $f$ be a pointfree funcoid whose
source is a set with greatest element. \emph{Image} of $f$ will be
defined by the formula $\im f=\supfun f\top$.\end{defn}
\begin{prop}\label{pf-im-sub}
$\im f\sqsupseteq\supfun{f}x$ for every $x\in\Src f$ whenever $\Dst f$
is a strongly separable poset with greatest element.\end{prop}
\begin{proof}
$\supfun f\top$ is greater than every $\supfun fx$ (where $x\in\Src f$)
by proposition~\ref{pfcd-mono}.\end{proof}
\begin{defn}
\index{funcoid!pointfree!domain}\emph{Domain} of a pointfree funcoid
$f$ is defined by the formula $\dom f=\im f^{-1}$.\end{defn}
\begin{prop}\label{f-dom-f}
$\supfun f\dom f=\im f$ if $f$ is a pointfree funcoid and
$\Src f$ is a strongly separable poset with greatest element
and $\Dst f$ is a separable poset with greatest element.\end{prop}
\begin{proof}
For every $y\in\Dst f$
\begin{multline*}
y\nasymp\supfun f\dom f\Leftrightarrow\dom f\nasymp\supfun{f^{-1}}y\Leftrightarrow\supfun{f^{-1}}\top\nasymp\supfun{f^{-1}}y\Leftrightarrow\\
\text{(by strong separability of $\Src f$)}\\
\supfun{f^{-1}}y\text{ is not least}\Leftrightarrow\top\nasymp\supfun{f^{-1}}y\Leftrightarrow y\nasymp\supfun f\top\Leftrightarrow y\nasymp\im f.
\end{multline*}
So $\supfun f\dom f=\im f$ by separability of $\Dst f$.\end{proof}
\begin{prop}\label{pf-cap-dom}
$\supfun fx=\supfun f(x\sqcap\dom f)$
for every $x\in\Src f$ for a pointfree funcoid $f$ whose source
is a bounded separable meet-semilattice and destination is a bounded separable poset.\end{prop}
\begin{proof}
$\Src f$ is strongly separable by theorem~\ref{msl-sep-conds}.
For every $y\in\Dst f$ we have
\begin{multline*}
y\nasymp\supfun f(x\sqcap\dom f)\Leftrightarrow x\sqcap\dom f\sqcap\supfun{f^{-1}}y\ne\bot^{\Src f}\Leftrightarrow\\
x\sqcap\im f^{-1}\sqcap\supfun{f^{-1}}y\ne\bot^{\Src f}\Leftrightarrow\\
\text{(by strong separability of $\Src f$)}\\
x\sqcap\supfun{f^{-1}}y\ne\bot^{\Src f}\Leftrightarrow y\nasymp\supfun fx.
\end{multline*}
Thus $\supfun fx=\supfun f(x\sqcap\dom f)$ by separability of $\Dst f$.\end{proof}
\begin{prop}
$x\nasymp\dom f\Leftrightarrow(\supfun fx\text{ is not least})$ for
every pointfree funcoid $f$ and $x\in\Src f$ if $\Dst f$ has greatest
element $\top$.\end{prop}
\begin{proof}
$x\nasymp\dom f\Leftrightarrow x\nasymp\supfun{f^{-1}}\top^{\Dst f}\Leftrightarrow\top^{\Dst f}\nasymp\supfun fx\Leftrightarrow(\supfun fx\text{ is not least})$.\end{proof}
\begin{prop}
$\dom f=\bigsqcup\setcond{a\in\atoms^{\Src f}}{\supfun fa\ne\bot^{\Dst f}}$
for every pointfree funcoid $f$ whose destination is a bounded strongly separable poset
and source is an atomistic poset.\end{prop}
\begin{proof}
For every $a\in\atoms^{\Src f}$ we have
\[
a\nasymp\dom f\Leftrightarrow a\nasymp\supfun{f^{-1}}\top^{\Dst f}\Leftrightarrow\top^{\Dst f}\nasymp\supfun fa\Leftrightarrow\supfun fa\ne\bot^{\Dst f}.
\]
So $\dom f=\bigsqcup\setcond{a\in\atoms^{\Src f}}{a\nasymp\dom f}=\bigsqcup\setcond{a\in\atoms^{\Src f}}{\supfun fa\ne\bot^{\Dst f}}$.\end{proof}
\begin{prop}
$\dom(f|_{a})=a\sqcap\dom f$ for every pointfree funcoid $f$ and
$a\in\Src f$ where $\Src f$ is a meet-semilattice and
$\Dst f$ has greatest element.\end{prop}
\begin{proof}
~
\begin{multline*}
\dom(f|_{a})=\im(\id_{a}^{\mathsf{pFCD}(\Src f)}\circ f^{-1})=\\
\supfun{\id_{a}^{\mathsf{pFCD}(\Src f)}}\supfun{f^{-1}}\top^{\Dst f}=a\sqcap\supfun{f^{-1}}\top^{\Dst f}=a\sqcap\dom f.
\end{multline*}
\end{proof}
\begin{prop}
For every composable pointfree funcoids $f$ and $g$
\begin{enumerate}
\item \label{pf-im-ge-dom}If $\im f\sqsupseteq\dom g$ then $\im(g\circ f)=\im g$, provided that
the posets $\Src f$, $\Dst f=\Src g$ and $\Dst g$ have greatest elements and $\Src g$ and $\Dst g$ are strongly separable.
\item \label{pf-im-le-dom}If $\im f\sqsubseteq\dom g$ then $\dom(g\circ f)=\dom g$, provided that
the posets $\Dst g$, $\Dst f=\Src g$ and $\Src f$ have greatest elements and $\Dst f$ and $\Src f$ are strongly separable.
\end{enumerate}
\end{prop}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{pf-im-ge-dom}}] $\im(g\circ f)=\supfun{g\circ f}\top^{\Src f}=\supfun g\supfun f\top^{\Src f}\sqsubseteq\im g$
by strong separability of $\Dst g$;
$\im(g\circ f)=\supfun{g\circ f}\top^{\Src f}=\supfun{g}\im f\sqsupseteq\supfun{g}\dom g=\im g$ by strong separability of $\Dst g$
and proposition~\ref{f-dom-f}.
\item [{\ref{pf-im-le-dom}}] $\dom(g\circ f)=\im(f^{-1}\circ g^{-1})$
what by the proved is equal to $\im f^{-1}$ that is $\dom f$.
\end{widedisorder}
\end{proof}
\section{Specifying funcoids by functions or relations on atomic filters}
\begin{thm}
\label{spfn-atoms}Let $\mathfrak{A}$ be an atomic poset and $(\mathfrak{B},\mathfrak{Z}_{1})$
is a primary filtrator over a boolean lattice. Then for every $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
and $\mathcal{X}\in\mathfrak{A}$ we have
\[
\supfun f\mathcal{X}=\bigsqcup^{\mathfrak{B}}\rsupfun{\supfun f}\atoms^{\mathfrak{A}}\mathcal{X}.
\]
\end{thm}
\begin{proof}
For every $Y\in\mathfrak{Z}_{1}$ we have
\begin{multline*}
Y\nasymp^{\mathfrak{B}}\supfun f\mathcal{X}\Leftrightarrow\mathcal{X}\nasymp^{\mathfrak{A}}\supfun{f^{-1}}Y\Leftrightarrow\\
\exists x\in\atoms^{\mathfrak{A}}\mathcal{X}:x\nasymp^{\mathfrak{A}}\supfun{f^{-1}}Y\Leftrightarrow\exists x\in\atoms^{\mathfrak{A}}\mathcal{X}:Y\nasymp^{\mathfrak{B}}\supfun fx.
\end{multline*}
Thus $\corestar\supfun f\mathcal{X}=\bigcup\rsupfun{\corestar}\rsupfun{\supfun f}\atoms^{\mathfrak{A}}\mathcal{X}=\corestar\bigsqcup^{\mathfrak{B}}\rsupfun{\supfun f}\atoms^{\mathfrak{A}}\mathcal{X}$
(used corollary~\ref{d-f-join}). Consequently $\supfun f\mathcal{X}=\bigsqcup^{\mathfrak{B}}\rsupfun{\supfun f}\atoms^{\mathfrak{A}}\mathcal{X}$
by the corollary \ref{d-inj}.\end{proof}
\begin{prop}
Let $f$ be a pointfree funcoid. Then for every $\mathcal{X}\in\Src f$
and $\mathcal{Y}\in\Dst f$
\begin{enumerate}
\item $\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\exists x\in\atoms\mathcal{X}:x\suprel f\mathcal{Y}$
if $\Src f$ is an atomic poset.
\item $\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\exists y\in\atoms\mathcal{Y}:\mathcal{X}\suprel fy$
if $\Dst f$ is an atomic poset.
\end{enumerate}
\end{prop}
\begin{proof}
I will prove only the second as the first is similar.
If $\mathcal{X}\suprel f\mathcal{Y}$, then $\mathcal{Y}\nasymp\supfun f\mathcal{X}$,
consequently exists $y\in\atoms\mathcal{Y}$ such that $y\nasymp\supfun f\mathcal{X}$,
$\mathcal{X}\suprel fy$. The reverse is obvious.\end{proof}
\begin{cor}
\label{pf-suprel-atoms}If $f$ is a pointfree funcoid with both source
and destination being atomic posets, then for every $\mathcal{X}\in\Src f$
and $\mathcal{Y}\in\Dst f$
\[
\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\exists x\in\atoms\mathcal{X},y\in\atoms\mathcal{Y}:x\suprel fy.
\]
\end{cor}
\begin{proof}
Apply the theorem twice.\end{proof}
\begin{cor}
If $\mathfrak{A}$ is a separable atomic poset and $\mathfrak{B}$
is a separable poset then $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
is determined by the values of $\supfun fX$ for $X\in\atoms^{\mathfrak{A}}$.\end{cor}
\begin{proof}
~
\begin{multline*}
y\nasymp\supfun fx\Leftrightarrow x\nasymp\supfun{f^{-1}}y\Leftrightarrow\\
\exists X\in\atoms x:X\nasymp\supfun{f^{-1}}y\Leftrightarrow \\ \exists X\in\atoms x:y\nasymp\supfun fX.
\end{multline*}
Thus by separability of $\mathfrak{B}$ we have $\supfun f$ is determined
by $\supfun fX$ for $X\in\atoms x$.
By separability of $\mathfrak{A}$ we infer that $f$ can be restored
from $\supfun f$ (theorem \ref{one-funcoid}).\end{proof}
\begin{thm}
\label{pf-atom-cont}Let $(\mathfrak{A},\mathfrak{Z}_{0})$ and $(\mathfrak{B},\mathfrak{Z}_{1})$
be primary filtrators over boolean lattices.
\begin{enumerate}
\item \label{pf-at-f}A function $\alpha\in\mathfrak{B}^{\atoms^{\mathfrak{A}}}$
such that (for every $a\in\atoms^{\mathfrak{A}}$)
\begin{equation}
\alpha a\sqsubseteq\bigsqcap\rsupfun{\bigsqcup\circ\rsupfun{\alpha}\circ\atoms^{\mathfrak{A}}}\up^{\mathfrak{Z}_{0}}a\label{pf-alpha-a-greater}
\end{equation}
can be continued to the function $\supfun f$ for a unique $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$;
\begin{equation}
\supfun f\mathcal{X}=\bigsqcup\rsupfun{\alpha}\atoms^{\mathfrak{A}}\mathcal{X}\label{pf-atoms-fun-cont}
\end{equation}
for every $\mathcal{X}\in\mathfrak{A}$.
\item \label{pf-at-r}A relation $\delta\in\subsets(\atoms^{\mathfrak{A}}\times\atoms^{\mathfrak{B}})$
such that (for every $a\in\atoms^{\mathfrak{A}}$, $b\in\atoms^{\mathfrak{B}}$)
\begin{equation}
\forall X\in\up^{\mathfrak{Z}_{0}}a,Y\in\up^{\mathfrak{Z}_{1}}b\exists x\in\atoms^{\mathfrak{A}}X,y\in\atoms^{\mathfrak{B}}Y:x\mathrel{\delta}y\Rightarrow a\mathrel{\delta}b\label{pf-atoms-delta}
\end{equation}
can be continued to the relation $\suprel f$ for a unique $f\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$;
\begin{equation}
\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\exists x\in\atoms\mathcal{X},y\in\atoms\mathcal{Y}:x\mathrel{\delta}y\label{pf-atoms-rel-cont}
\end{equation}
for every $\mathcal{X}\in\mathfrak{A}$, $\mathcal{Y}\in\mathfrak{B}$.
\end{enumerate}
\end{thm}
\begin{proof}
Existence of no more than one such funcoids and formulas (\ref{pf-atoms-fun-cont})
and (\ref{pf-atoms-rel-cont}) follow from theorem~\ref{spfn-atoms}
and corollary~\ref{pf-suprel-atoms} and the fact that our filtrators
are separable.
\begin{widedisorder}
\item [{\ref{pf-at-f}}] Consider the function $\alpha'\in\mathfrak{B}^{\mathfrak{Z}_{0}}$
defined by the formula (for every $X\in\mathfrak{Z}_{0}$)
\[
\alpha'X=\bigsqcup\rsupfun{\alpha}\atoms^{\mathfrak{A}}X.
\]
Obviously $\alpha'\bot^{\mathfrak{Z}_{0}}=\bot^{\mathfrak{B}}$. For every
$I,J\in\mathfrak{Z}_{0}$
\begin{align*}
\alpha'(I\sqcup J) & =\\
\bigsqcup\rsupfun{\alpha}\atoms^{\mathfrak{A}}(I\sqcup J) & =\\
\bigsqcup\rsupfun{\alpha}(\atoms^{\mathfrak{A}}I\cup\atoms^{\mathfrak{A}}J) & =\\
\bigsqcup(\rsupfun{\alpha}\atoms^{\mathfrak{A}}I\cup\rsupfun{\alpha}\atoms^{\mathfrak{A}}J) & =\\
\bigsqcup\rsupfun{\alpha}\atoms^{\mathfrak{A}}I\sqcup\bigsqcup\rsupfun{\alpha}\atoms^{\mathfrak{A}}J & =\\
\alpha'I\sqcup\alpha'J.
\end{align*}
Let continue $\alpha'$ till a pointfree funcoid $f$ (by the theorem
\ref{pf-cont}): $\supfun f\mathcal{X}=\bigsqcap\rsupfun{\alpha'}\up^{\mathfrak{Z}_{0}}\mathcal{X}$.
Let's prove the reverse of (\ref{pf-alpha-a-greater}):
\begin{align*}
\bigsqcap\rsupfun{\bigsqcup\circ\rsupfun{\alpha}\circ\atoms^{\mathfrak{A}}}\up^{\mathfrak{Z}_{0}}a & =\\
\bigsqcap\rsupfun{\bigsqcup\circ\rsupfun{\alpha}}\rsupfun{\atoms^{\mathfrak{A}}}\up^{\mathfrak{Z}_{0}}a & \sqsubseteq\\
\bigsqcap\rsupfun{\bigsqcup\circ\rsupfun{\alpha}}\{\{a\}\} & =\\
\bigsqcap\left\{ \left(\bigsqcup\circ\rsupfun{\alpha}\right)\{a\}\right\} & =\\
\bigsqcap\left\{ \bigsqcup\rsupfun{\alpha}\{a\}\right\} & =\\
\bigsqcap\left\{ \bigsqcup\{\alpha a\}\right\} & =\\
\bigsqcap\{\alpha a\} & =\alpha a.
\end{align*}
Finally,
\[
\alpha a=\bigsqcap\rsupfun{\bigsqcup\circ\rsupfun{\alpha}\circ\atoms^{\mathfrak{A}}}\up^{\mathfrak{Z}_{0}}a=\bigsqcap\rsupfun{\alpha'}\up^{\mathfrak{Z}_{0}}a=\supfun fa,
\]
so $\supfun f$ is a continuation of $\alpha$.
\item [{\ref{pf-at-r}}] Consider the relation $\delta'\in\subsets(\mathfrak{Z}_{0}\times\mathfrak{Z}_{1})$
defined by the formula (for every $X\in\mathfrak{Z}_{0}$, $Y\in\mathfrak{Z}_{1}$)
\[
X\mathrel{\delta'}Y\Leftrightarrow\exists x\in\atoms^{\mathfrak{A}}X,y\in\atoms^{\mathfrak{B}}Y:x\mathrel{\delta}y.
\]
Obviously $\neg(X\mathrel{\delta'}\bot^{\mathfrak{Z}_{1}})$ and $\neg(\bot^{\mathfrak{Z}_{0}}\mathrel{\delta'}Y)$.
\begin{align*}
I\sqcup J\mathrel{\delta'}Y & \Leftrightarrow\\
\exists x\in\atoms^{\mathfrak{A}}(I\sqcup J),y\in\atoms^{\mathfrak{B}}Y:x\mathrel{\delta}y & \Leftrightarrow\\
\exists x\in\atoms^{\mathfrak{A}}I\cup\atoms^{\mathfrak{A}}J,y\in\atoms^{\mathfrak{B}}Y:x\mathrel{\delta}y & \Leftrightarrow\\
\exists x\in\atoms^{\mathfrak{A}}I,y\in\atoms^{\mathfrak{B}}Y:x\mathrel{\delta}y\lor\exists x\in\atoms^{\mathfrak{A}}J,y\in\atoms^{\mathfrak{B}}Y:x\mathrel{\delta}y & \Leftrightarrow\\
I\mathrel{\delta'}Y\lor J\mathrel{\delta'}Y;
\end{align*}
similarly $X\mathrel{\delta'}I\sqcup J\Leftrightarrow X\mathrel{\delta'}I\lor X\mathrel{\delta'}J$.
Let's continue $\delta'$ till a funcoid $f$ (by the theorem \ref{pf-cont}):
\[
\mathcal{X}\suprel f\mathcal{Y}\Leftrightarrow\forall X\in\up^{\mathfrak{Z}_{0}}\mathcal{X},Y\in\up^{\mathfrak{Z}_{1}}\mathcal{Y}:X\mathrel{\delta'}Y.
\]
The reverse of (\ref{pf-atoms-delta}) implication is trivial, so
\[
\forall X\in\up^{\mathfrak{Z}_{0}}a,Y\in\up^{\mathfrak{Z}_{1}}b\exists x\in\atoms^{\mathfrak{A}}X,y\in\atoms^{\mathfrak{B}}Y:x\mathrel{\delta}y\Leftrightarrow a\mathrel{\delta}b;
\]
\begin{align*}
\forall X\in\up^{\mathfrak{Z}_{0}}a,Y\in\up^{\mathfrak{Z}_{1}}b\exists x\in\atoms^{\mathfrak{A}}X,y\in\atoms^{\mathfrak{B}}Y:x\mathrel{\delta}y & \Leftrightarrow\\
\forall X\in\up^{\mathfrak{Z}_{0}}a,Y\in\up^{\mathfrak{Z}_{1}}b:X\mathrel{\delta'}Y & \Leftrightarrow\\
a\suprel fb.
\end{align*}
So $a\mathrel\delta b\Leftrightarrow a\suprel fb$, that is $\suprel f$
is a continuation of $\delta$.
\end{widedisorder}
\end{proof}
\begin{thm}
\label{pf-meet-atom}Let $(\mathfrak{A},\mathfrak{Z}_{0})$ and $(\mathfrak{B},\mathfrak{Z}_{1})$
be primary filtrators over boolean lattices. If $R\in\subsets\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$
and $x\in\atoms^{\mathfrak{A}}$, $y\in\atoms^{\mathfrak{B}}$, then
\begin{enumerate}
\item \label{pf-meet-at-f}$\supfun{\bigsqcap R}x=\bigsqcap_{f\in R}\supfun fx$;
\item \label{pf-meet-at-r}$x\suprel{\bigsqcap R}y\Leftrightarrow\forall f\in R:x\suprel fy$.
\end{enumerate}
\end{thm}
\begin{proof}
~
\begin{widedisorder}
\item [{\ref{pf-meet-at-r}}] Let denote $x\mathrel\delta y\Leftrightarrow\forall f\in R:x\suprel fy$.
\begin{gather*}
\forall X\in\up^{\mathfrak{Z}_{0}}a,Y\in\up^{\mathfrak{Z}_{1}}b\exists x\in\atoms^{\mathfrak{A}}X,y\in\atoms^{\mathfrak{B}}Y:x\mathrel\delta y\Rightarrow\\
\forall f\in R,X\in\up^{\mathfrak{Z}_{0}}a,Y\in\up^{\mathfrak{Z}_{1}}b\exists x\in\atoms^{\mathfrak{A}}X,y\in\atoms^{\mathfrak{B}}Y:x\suprel fy\Rightarrow\\
\forall f\in R,X\in\up^{\mathfrak{Z}_{0}}a,Y\in\up^{\mathfrak{Z}_{1}}b:X\suprel fY\Rightarrow\\
\forall f\in R:a\suprel fb\Leftrightarrow\\
a\mathrel\delta b.
\end{gather*}
So by theorem \ref{pf-atom-cont}, $\delta$ can be continued
till $\suprel p$ for some $p\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$.
For every $q\in\mathsf{pFCD}(\mathfrak{A},\mathfrak{B})$ such that
$\forall f\in R:q\sqsubseteq f$ we have $x\suprel qy\Rightarrow\forall f\in R:x\suprel fy\Leftrightarrow x\mathrel{\delta}y\Leftrightarrow x\suprel py$,
so $q\sqsubseteq p$. Consequently $p=\bigsqcap R$.
From this $x\suprel{\bigsqcap R}y\Leftrightarrow\forall f\in R:x\suprel fy$.
\item [{\ref{pf-meet-at-f}}] From the former
\begin{multline*}
y\in\atoms^{\mathfrak{B}}\supfun{\bigsqcap R}x\Leftrightarrow y\sqcap\supfun{\bigsqcap R}x\ne\bot^{\mathfrak{B}}\Leftrightarrow\forall f\in R:y\sqcap\supfun fx\ne\bot^{\mathfrak{B}}\Leftrightarrow\\
y\in\bigcap\rsupfun{\atoms^{\mathfrak{B}}}\setcond{\supfun fx}{f\in R}\Leftrightarrow y\in\atoms\bigsqcap\setcond{\supfun fx}{f\in R}
\end{multline*}
for every $y\in\atoms^{\mathfrak{B}}$.
$\mathfrak{B}$ is atomically separable by the corollary \ref{f-atom-sep}.