-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-sides.tex
509 lines (392 loc) · 17.5 KB
/
chap-sides.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
\chapter{Systems of sides}
Now we will consider a common generalization of (some of pointfree) funcoids and (some of) Galois connections.
The main purpose of this is general theorem~\ref{neg-prod} below.
First consider some properties of Galois connections:
\section{More on Galois connections}
Here I will denote $\supfun{f}$ the lower adjoint of a Galois connection~$f$. \fxnote{Switch to this notation in the book?}
Let $\mathsf{GAL}$ be the category of Galois connections.
\fxwarning{Need to decide whether use $\mathsf{GAL}(A,B)$ or $A\otimes B$.}
I will denote $(f,g)^{-1}=(g,f)$ for a Galois connection~$(f,g)$.
We will order Galois connections by the formula
\[ f\sqsubseteq g \Leftrightarrow \supfun{f}\sqsubseteq\supfun{g} \Leftrightarrow \supfun{f^{-1}}\sqsupseteq\supfun{g^{-1}}. \]
\begin{obvious}
This defines a partial order on the set of Galois connections between any two (fixed) posets.
\end{obvious}
\begin{prop}\label{gal-fjoin-x}
If $f$ and~$g$ are Galois connections (between a join-semilattice~$\mathfrak{A}$ and a meet-semilattice~$\mathfrak{B}$),
then there exists a Galois connection~$f\sqcup g$
determined by the formula~$\supfun{f\sqcup g}x = \supfun{f}x\sqcup\supfun{g}x$.
\end{prop}
\begin{proof}
It is enough to prove that
\[ (x\mapsto\supfun{f}x\sqcup\supfun{g}x, y\mapsto\supfun{f^{-1}}y\sqcap\supfun{g^{-1}}y) \]
is a Galois connection that is that
\[ \supfun{f}x\sqcup\supfun{g}x\sqsubseteq y\Leftrightarrow x\sqsubseteq\supfun{f^{-1}}y\sqcap\supfun{g^{-1}}y \] for all relevant~$x$ and~$y$.
Really,
\begin{multline*}
\supfun{f}x\sqcup\supfun{g}x\sqsubseteq y \Leftrightarrow
\supfun{f}x\sqsubseteq y\land\supfun{g}x\sqsubseteq y \Leftrightarrow \\
x\sqsubseteq\supfun{f^{-1}}y\land x\sqsubseteq\supfun{g^{-1}}y \Leftrightarrow
x\sqsubseteq\supfun{f^{-1}}y\sqcap\supfun{g^{-1}}y.
\end{multline*}
\end{proof}
\fxnote{Describe infinite join of Galois connections.}
\begin{prop}\label{a-bot}
If $\mathfrak{A}$ is a poset with least element, then $\supfun{a}\bot=\bot$.
\end{prop}
\begin{proof}
$\supfun{a}\bot\sqsubseteq y\Leftrightarrow \bot\sqsubseteq\supfun{a^{-1}}y\Leftrightarrow 1$.
Thus $\supfun{a}\bot$ is the least element.
\end{proof}
\begin{prop}
$(\mathfrak{A}\times\{\bot^\mathfrak{B}\}, \mathfrak{B}\times\{\top^\mathfrak{A}\})$ is the least Galois connection from
a poset~$\mathfrak{A}$ with greatest element to a poset~$\mathfrak{B}$ with least element.
\end{prop}
\begin{proof}
Let's prove that it is a Galois connection. We need to prove
\[ (\mathfrak{A}\times\{\bot^\mathfrak{B}\})x\sqsubseteq y \Leftrightarrow x\sqsubseteq (\mathfrak{B}\times\{\top^\mathfrak{A}\})y. \]
But this is trivially equivalent to $1\Leftrightarrow 1$. Thus it's a Galois connection.
That it the least is obvious.
\end{proof}
\begin{cor}
$\supfun{\bot}x=\bot$ for Galois connections from
a poset~$\mathfrak{A}$ with greatest element to a poset~$\mathfrak{B}$ with least element.
\fxwarning{Clarify.}
\end{cor}
\begin{thm}\label{gal-bound}
If $\mathfrak{A}$ and $\mathfrak{B}$ are bounded posets, then $\mathsf{GAL}(\mathfrak{A}, \mathfrak{B})$ is bounded.
\end{thm}
\begin{proof}
That $\mathsf{GAL} (\mathfrak{A}, \mathfrak{B})$ has least element was proved
above. I will demonstrate that $(\alpha , \beta)$
is the greatest element of $\mathsf{pFCD} (\mathfrak{A}, \mathfrak{B})$ for
\[ \alpha X = \begin{cases}
\bot^{\mathfrak{B}} & \text{if } X = \bot^{\mathfrak{A}}\\
\top^{\mathfrak{B}} & \text{if } X \neq \bot^{\mathfrak{A}}
\end{cases} ; \quad
\beta Y = \begin{cases}
\top^{\mathfrak{A}} & \text{if } Y = \top^{\mathfrak{B}}\\
\bot^{\mathfrak{A}} & \text{if } Y \neq \top^{\mathfrak{B}}
\end{cases} . \]
First prove $Y \sqsubseteq \alpha X \Leftrightarrow X \sqsubseteq \beta Y$.
Really $\alpha X\sqsubseteq Y \Leftrightarrow X=\bot^{\mathfrak{A}}\lor Y=\top^{\mathfrak{B}} \Leftrightarrow X \sqsubseteq \beta Y$.
That it is the greatest Galois connection between~$\mathfrak{A}$ and~$\mathfrak{B}$ easily follows from proposition~\ref{a-bot}.
\end{proof}
\begin{thm}\label{gal-id-ex}
For every brouwerian lattice $x \mapsto c \sqcap x$ is a lower adjoint.
\end{thm}
\begin{proof}
By dual of theorem~\bookref{cobrow-adj}.
\end{proof}
\begin{xca}
Describe the corresponding upper adjoint, especially for the special case of
boolean lattices.
\end{xca}
\section{Definition}
\begin{defn}
\emph{System of presides} is
a functor $\Upsilon = (f\mapsto\supfun{f})$ from an ordered category
to the category of functions between (small) bounded lattices,
such that (for all relevant variables):
\begin{enumerate}
\item Every Hom-set of~$\Src\Upsilon$ is a bounded join-semilattice.
\item $\supfun{a}\bot = \bot$.
\item $\supfun{a \sqcup b} X = \supfun{a} X \sqcup \supfun{b} X$ (equivalent to $\Upsilon$ to be a join-semilattice homomorphism,
if we order functions between small bounded lattices component-wise).
\end{enumerate}
I call morphisms of such categories \emph{sides}.\footnote{The idea for the name is that we consider one ``side''~$\supfun{f}$ of a funcoid instead of both sides~$\supfun{f}$ and~$\supfun{f^{-1}}$.}
\end{defn}
\begin{rem}
We could generalize to functions between small join-semilattices with least elements instead of bounded lattices only, but this is not really necessary.
\end{rem}
\begin{defn}
I will call objects of the source category of this functor simply \emph{objects of the presides}.
\end{defn}
\begin{defn}
\emph{Bounded} system of presides is system of presides from an ordered category with bounded Hom-sets
such that $X,Y\in\Ob\Src\Upsilon$ the following additional axioms hold for all suitable~$a$:
\begin{enumerate}
\item $\supfun{\bot^{\Hom(X,Y)}} a = \bot$.
\item $\supfun{\top^{\Hom(X,Y)}} a = \top$ unless $a = \bot$
\end{enumerate}
\end{defn}
\begin{defn}
\emph{System of presides with identities} is a system of presides with
a morphism $\id_a\in\Src\Upsilon$ for every object $\mathfrak{A}$ of~$\Src\Upsilon$ and $a\in\mathfrak{A}$
and the following additional axioms:
\begin{enumerate}
\item $\id_c \sqsubseteq 1_{\mathfrak{A}}$ for every $c \in \mathfrak{A}$
where $\mathfrak{A}$ is an object of~$\Src\Upsilon$.
\item $\supfun{\id_c} = (\lambda x \in \mathfrak{A}: x \sqcap c)$ for every $c \in \mathfrak{A}$
where $\mathfrak{A}$ is an object of~$\Src\Upsilon$
\end{enumerate}
\end{defn}
\begin{defn}
\emph{System of sides} is a system of presides which is both bounded and with identities.
\end{defn}
\begin{prop}
$\supfun{1^{\Src\Upsilon}_\mathfrak{A}} a = a$ for every system of presides.
\end{prop}
\begin{proof}
By properties of functors.
\end{proof}
\begin{defn}
I call a system of \emph{monotone} presides a system of presides with additional axiom:
\begin{enumerate}
\item $\supfun{a}$ is monotone.
\end{enumerate}
\end{defn}
\begin{defn}
I call a system of \emph{distributive} presides a system of presides with additional axiom:
\begin{enumerate}
\item $\supfun{a}(X\sqcup Y) = \supfun{a}X\sqcup\supfun{a}Y$.
\end{enumerate}
\end{defn}
\begin{obvious}
Every distributive system of presides is monotone.
\end{obvious}
\begin{prop}
$\supfun{a \sqcap b} X \sqsubseteq \supfun{a} X \sqcap \supfun{b} X$ for monotone systems of sides
if Hom-sets are lattices.
\end{prop}
\begin{defn}
A system of presides \emph{with correct identities} is a system of presides with identities with additional axiom:
\begin{enumerate}
\item $\id_b\circ\id_a = \id_{a\sqcap b}$.
\end{enumerate}
\end{defn}
\begin{prop}
Every faithful system of presides with identities is with correct identities.
\end{prop}
\begin{proof}
$\supfun{\id_b\circ\id_a}x = (\supfun{\id_b}\circ\supfun{\id_a})x = \supfun{\id_b}\supfun{\id_a}x = b\sqcap a\sqcap x = \supfun{\id_{b\sqcap a}}x$.
Thus by faithfulness $\id_b\circ\id_a = \id_{b\sqcap a} = \id_{a\sqcap b}$.
\end{proof}
\begin{defn}
\emph{Restricting} a side~$f$ to an object~$X$ is defined by the formula $f|_X = f\circ\id_X$.
\end{defn}
\begin{defn}
\emph{Image} of a preside is defined by the formula $\im f=\supfun{f}\top$.
\end{defn}
\begin{defn}
Protofuncoids \emph{over} a set~$X$ of functors is a protofuncoid~$f$
such that $\supfun{f}\in X\land\supfun{f^{-1}}\in X$.
\end{defn}
\section{Concrete examples of sides}
\begin{obvious}
The category~$\mathbf{Rel}$ with $\supfun{f}=\rsupfun{f}$ for $f\in\mathbf{Rel}$ and usual $\id_c$ defines a distributive system of sides with correct identities.
\end{obvious}
\subsection{Some subsides}
\begin{defn}
\emph{Full subsystem} of a system~$\Upsilon$ of presides is the functor~$\Upsilon$ restricted to a full subcategory of~$\Src\Upsilon$.
\end{defn}
\begin{obvious}
Full subsystem of a system of presides is always a system of presides.
\end{obvious}
\begin{obvious}
Full subsystem of a bounded system of presides is always a bounded subsystem of presides.
\end{obvious}
\begin{obvious}
~
\begin{enumerate}
\item Full subsystem of a system of presides with identities is always with identities.
\item Full subsystem of a system of presides with correct identities is always with correct identities.
\end{enumerate}
\end{obvious}
\begin{obvious}
Full subsystem of a distributive system of presides is always a distributive system of presides.
\end{obvious}
\begin{obvious}
Full subsystem of a system of sides is always a system of sides.
\end{obvious}
\subsection{Funcoids and pointfree funcoids}
\begin{prop}
The category of pointfree funcoids between starrish join-semilattices with usual~$\supfun{f}$ defines a system of presides.
\end{prop}
\begin{proof}
Theorem~\bookref{pf-fin-join}.
\end{proof}
\begin{prop}
The category of pointfree funcoids between bounded starrish join-semilattices with usual~$\supfun{f}$ defines a system of
bounded presides.
\end{prop}
\begin{proof}
Take the proof of theorem~\bookref{pfcd-bound} into account.
\end{proof}
\begin{prop}
The category of pointfree funcoids from a starrish join-semilattices to a separable starrish join-semilattices
defines a distributive system of presides.
\end{prop}
\begin{proof}
Theorem~\bookref{pf-dist-func}.
\end{proof}
\begin{prop}
The category of pointfree funcoids between starrish lattices with usual~$\supfun{f}$ and usual $\id_c$ defines a system of presides with correct identities.
\end{prop}
\begin{proof}
That it is with identities is obvious.
That it is with correct identities is obvious.
\end{proof}
\begin{obvious}
The category of pointfree funcoids between bounded starrish lattices with usual~$\supfun{f}$ and usual $\id_c$ defines a system of sides with correct identities.
\end{obvious}
\begin{prop}
The category of funcoids with usual~$\supfun{f}$ and usual $\id_c$ defines a system of sides with correct identities.
\end{prop}
\begin{proof}
Because it can be considered a full subsystem of
the category of pointfree funcoids between bounded starrish lattices with usual~$\supfun{f}$.
\end{proof}
\subsection{Galois connections}
\begin{prop}
The category of Galois connections between (small) lattices with least elements together with usual~$\supfun{f}$
defines a distributive system of presides.
\end{prop}
\begin{proof}
Propositions~\ref{gal-fjoin-x} and~\ref{a-bot} for a system of presides.
It is distributive because lower adjoints preserve all joins.
\end{proof}
\begin{prop}
The category of Galois connections between (small) bounded lattices together with usual~$\supfun{f}$
defines a bounded system of presides.
\end{prop}
\begin{proof}
Theorem~\ref{gal-bound}.
\end{proof}
\begin{prop}
The category of Galois connections between (small) Heyting lattices together with usual~$\supfun{f}$
defines a system of sides with correct identities.
\end{prop}
\begin{proof}
Theorem~\ref{gal-id-ex} ensures that they a system of sides with identities. The identities are correct due to faithfulness.
\end{proof}
\subsection{Reloids}
\begin{prop}
Reloids with the functor $f\mapsto\supfun{\tofcd f}$ and usual $\id_c$ form a system of sides with correct identities.
\end{prop}
\begin{proof}
It is really a functor because
$\supfun{\tofcd g}\circ\supfun{\tofcd f} = \supfun{\tofcd g\circ\tofcd f} = \supfun{\tofcd(g\circ f)}$
for every composable reloids~$f$ and~$g$.
$\supfun{a}\bot = \supfun{\tofcd a}\bot = \bot$;
\begin{multline*}
\supfun{a\sqcup b}X = \supfun{\tofcd(a\sqcup b)}X = \supfun{\tofcd a\sqcup\tofcd b)}X = \\
\supfun{\tofcd a}X\sqcup\supfun{\tofcd b}X = \supfun{a}X\sqcup\supfun{b}X;
\end{multline*}
thus it is a system of presides.
That this is a bounded system of presides follows from the formulas
$\tofcd\bot^{\mathsf{RLD}(A,B)}=\bot$ and $\tofcd\top^{\mathsf{RLD}(A,B)}=\top$.
It is with identities, because proposition~\bookref{fcd-id}.
It is with correct identities by proposition~\bookref{rld-id-comp}.
\end{proof}
\fxnote{Also for pointfree reloids.}
\fxnote{These examples works for (dagger) systems of sides with binary product.}
\section{Product}
\begin{defn}
\emph{Binary product} of objects of presides with identities is defined by the formula $X\times Y=\id_Y\circ\top\circ\id_X$.
\end{defn}
\begin{defn}
System of presides with identities is \emph{with correct binary product} when $f\sqcap(X\times Y) = \id_Y\circ f\circ\id_X$
for every preside~$f$.
\end{defn}
\begin{prop}
$\supfun{A\times B}X = \begin{cases}\bot&\text{ if }X\asymp A\\B&\text{ if }X\nasymp A\end{cases}$
\end{prop}
\begin{proof}
~
\begin{multline*}
\supfun{A\times B}X = \supfun{\id_B\circ\top\circ\id_A}X =
\supfun{\id_B}\supfun{\top}\supfun{\id_A}X = \\
B\sqcap\supfun{\top}(X\sqcap A) =
B\sqcap\begin{cases}\bot&\text{ if }X\asymp A\\\top&\text{ if }X\nasymp A\end{cases} =
\begin{cases}\bot&\text{ if }X\asymp A\\B&\text{ if }X\nasymp A\end{cases}
\end{multline*}
\end{proof}
\begin{defn}
I will call a system of sides \emph{with correct meet} when
\[ (X_0\times Y_0)\sqcap(X_1\times Y_1) = (X_0\sqcap X_1)\times(Y_0\sqcap Y_1). \]
\end{defn}
\begin{prop}
Faithful systems of presides with identities are with correct meet.
\end{prop}
\begin{proof}
$(X_0\times Y_0)\sqcap(X_1\times Y_1) = \id_{Y_1}\circ(X_0\times Y_0)\circ\id_{X_1}$.
Thus
\begin{multline*}
\supfun{(X_0\times Y_0)\sqcap(X_1\times Y_1)} P = \supfun{\id_{Y_1}}\supfun{X_0\times Y_0}\supfun{\id_{X_1}} P = \\
\supfun{\id_{Y_1}}\begin{cases}\bot&\text{ if }X_0\asymp\supfun{\id_{X_1}}P\\Y_0&\text{ if }X_0\nasymp\supfun{\id_{X_1}}P\end{cases} =
\begin{cases}\bot&\text{ if }X_0\sqcap X_1\asymp P\\Y_0\sqcap Y_1&\text{ if }X_0\sqcap X_1\nasymp P\end{cases} = \\
\supfun{(X_0\sqcap X_1)\times(Y_0\sqcap Y_1)} P.
\end{multline*}
So $(X_0\times Y_0)\sqcap(X_1\times Y_1) = (X_0\sqcap X_1)\times(Y_0\sqcap Y_1)$ follows by full faithfulness.
\end{proof}
\begin{prop}
Systems of presides with correct identities are with correct meet.
\end{prop}
\begin{proof}
$(X_0 \times Y_0) \sqcap (X_1 \times Y_1) = \id_{Y_1} \circ (X_0 \times
Y_0) \circ \id_{X_1} = \id_{Y_1} \circ (\id_{Y_0} \circ \top
\circ \id_{X_0}) \circ \id_{X_1} = \id_{Y_0 \sqcap Y_1}
\circ \top \circ \id_{X_0 \sqcap X_1} = (X_0 \sqcap X_1) \times (Y_0
\sqcap Y_1)$.
\end{proof}
For some sides holds the formula $f\circ(X\times Y) = X\times\supfun{f}Y$.
I refrain to give a name for this property.
\section{Negative results}
The following negative result generalizes theorem~3.8 in~\cite{tprod-dist-lat}.
\begin{thm}\label{neg-prod}
The element $1^{(\Src\Upsilon)(\mathfrak{A}, \mathfrak{A})}$ is not
complemented if $\mathfrak{A}$ is a non-atomic boolean lattice,
for every monotone system of sides.
\end{thm}
\begin{proof}
Let $T = 1^{(\Src\Upsilon)(\mathfrak{A}, \mathfrak{A})}$.
Let's suppose $T \sqcup V = \top$ for $V \in (\Src\Upsilon) (\mathfrak{A},
\mathfrak{A})$ and prove $T \sqcap V \neq \bot$.
Then $\supfun{T \sqcup V} a = \top$ for all $a \neq \bot$ and thus $\supfun{V}
a \sqcup a = \top$.
Consequently $\supfun{V} a \sqsupseteq \neg a$ for all $a \neq \bot$.
If $a$ isn't an atom, then there exists $b$ with $0 \sqsubset b \sqsubset a$
and hence $\supfun{V} a \sqsupseteq \supfun{V} b \sqsupseteq \neg b \sqsupset \neg a$;
thus $\supfun{V} a \sqsupset \neg a$.
There is such $c\sqsubset\top$ that $a \sqsubseteq c$ for every atom $a$. (Really,
suppose some element $p \neq \bot$ has no atoms. Thus all atoms are in $\neg
p$.)
For $a \nsqsubseteq c$ we have $\supfun{V} a \sqcap a \sqsupset \bot$
for all $a \sqsubseteq \neg c$ thus $\supfun{T \sqcap V} a \sqsupseteq
\supfun{V} a \sqcap a \sqsupset \bot$. Thus $\supfun{(T \sqcap V) \circ
\id_{\neg c}} a \sqsupset \bot$
So $T \sqcap V \sqsupseteq (T \sqcap V) \circ \id_{\neg c} \sqsupset
\bot$. So $V$ is not a complement of $T$.
\end{proof}
\begin{cor}
$(\Src\Upsilon)(\mathfrak{A}, \mathfrak{A})$ is not boolean if $\mathfrak{A}$
is a non-atomic boolean lattice.
\end{cor}
\section{Dagger systems of sides}
\begin{prop}
~
\begin{enumerate}
\item For a partially ordered dagger category, each of Hom-set of which has least element, we have $\bot^\dagger = \bot$.
\item For a partially ordered dagger category, each of Hom-set of which has greatest element, we have $\top^\dagger = \top$.
\end{enumerate}
\end{prop}
\begin{proof}
$\forall f\in\Hom(A,B):\bot^\dagger\sqsubseteq f \Leftrightarrow
\forall f\in\Hom(A,B):\bot\sqsubseteq f^\dagger \Leftrightarrow
\forall f\in\Hom(A,B):\bot\sqsubseteq f \Leftrightarrow 1$. Thus $\bot^\dagger$ is the least.
The other items is dual.
\end{proof}
\begin{defn}
\emph{Dagger system of presides with identities} is system of presides with identities with category~$\Src\Upsilon$ being
a partially ordered dagger category
and $(\id_X)^\dagger = \id_X$ for every~$X$.
\end{defn}
\begin{prop}
For a system of sides we have $(X\times Y)^\dagger = Y\times X$.
\end{prop}
\begin{proof}
$(X\times Y)^\dagger = (\id_Y\circ\top\circ\id_X)^\dagger = \id_X^\dagger\circ\top^\dagger\circ\id_Y^\dagger =
\id_X\circ\top\circ\id_Y = Y\times X$.
\end{proof}
\fxnote{Which properties of pointfree funcoids can be generalized for sides?}