-
Notifications
You must be signed in to change notification settings - Fork 0
/
JCSAMPLE.PAS
643 lines (548 loc) · 22.2 KB
/
JCSAMPLE.PAS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
Unit JcSample;
{ This file contains downsampling routines.
Downsampling input data is counted in "row groups". A row group
is defined to be max_v_samp_factor pixel rows of each component,
from which the downsampler produces v_samp_factor sample rows.
A single row group is processed in each call to the downsampler module.
The downsampler is responsible for edge-expansion of its output data
to fill an integral number of DCT blocks horizontally. The source buffer
may be modified if it is helpful for this purpose (the source buffer is
allocated wide enough to correspond to the desired output width).
The caller (the prep controller) is responsible for vertical padding.
The downsampler may request "context rows" by setting need_context_rows
during startup. In this case, the input arrays will contain at least
one row group's worth of pixels above and below the passed-in data;
the caller will create dummy rows at image top and bottom by replicating
the first or last real pixel row.
An excellent reference for image resampling is
Digital Image Warping, George Wolberg, 1990.
Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
The downsampling algorithm used here is a simple average of the source
pixels covered by the output pixel. The hi-falutin sampling literature
refers to this as a "box filter". In general the characteristics of a box
filter are not very good, but for the specific cases we normally use (1:1
and 2:1 ratios) the box is equivalent to a "triangle filter" which is not
nearly so bad. If you intend to use other sampling ratios, you'd be well
advised to improve this code.
A simple input-smoothing capability is provided. This is mainly intended
for cleaning up color-dithered GIF input files (if you find it inadequate,
we suggest using an external filtering program such as pnmconvol). When
enabled, each input pixel P is replaced by a weighted sum of itself and its
eight neighbors. P's weight is 1-8*SF and each neighbor's weight is SF,
where SF := (smoothing_factor / 1024).
Currently, smoothing is only supported for 2h2v sampling factors. }
{ Original: jcsample.c ; Copyright (C) 1991-1996, Thomas G. Lane. }
interface
{$I jconfig.inc}
uses
jmorecfg,
jinclude,
jutils,
jdeferr,
jerror,
jpeglib;
{ Module initialization routine for downsampling.
Note that we must select a routine for each component. }
{GLOBAL}
procedure jinit_downsampler (cinfo : j_compress_ptr);
implementation
{ Pointer to routine to downsample a single component }
type
downsample1_ptr = procedure(cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY);
{ Private subobject }
type
my_downsample_ptr = ^my_downsampler;
my_downsampler = record
pub : jpeg_downsampler; { public fields }
{ Downsampling method pointers, one per component }
methods : array[0..MAX_COMPONENTS-1] of downsample1_ptr;
end;
{ Initialize for a downsampling pass. }
{METHODDEF}
procedure start_pass_downsample (cinfo : j_compress_ptr); far;
begin
{ no work for now }
end;
{ Expand a component horizontally from width input_cols to width output_cols,
by duplicating the rightmost samples. }
{LOCAL}
procedure expand_right_edge (image_data : JSAMPARRAY;
num_rows : int;
input_cols : JDIMENSION;
output_cols : JDIMENSION);
var
{register} ptr : JSAMPLE_PTR;
{register} pixval : JSAMPLE;
{register} count : int;
row : int;
numcols : int;
begin
numcols := int (output_cols - input_cols);
if (numcols > 0) then
begin
for row := 0 to pred(num_rows) do
begin
ptr := JSAMPLE_PTR(@(image_data^[row]^[input_cols-1]));
pixval := ptr^; { don't need GETJSAMPLE() here }
for count := pred(numcols) downto 0 do
begin
Inc(ptr);
ptr^ := pixval;
end;
end;
end;
end;
{ Do downsampling for a whole row group (all components).
In this version we simply downsample each component independently. }
{METHODDEF}
procedure sep_downsample (cinfo : j_compress_ptr;
input_buf : JSAMPIMAGE;
in_row_index : JDIMENSION;
output_buf : JSAMPIMAGE;
out_row_group_index : JDIMENSION); far;
var
downsample : my_downsample_ptr;
ci : int;
compptr : jpeg_component_info_ptr;
in_ptr, out_ptr : JSAMPARRAY;
begin
downsample := my_downsample_ptr (cinfo^.downsample);
compptr := cinfo^.comp_info;
for ci := 0 to pred(cinfo^.num_components) do
begin
in_ptr := JSAMPARRAY(@ input_buf^[ci]^[in_row_index]);
out_ptr := JSAMPARRAY(@ output_buf^[ci]^
[out_row_group_index * compptr^.v_samp_factor]);
downsample^.methods[ci] (cinfo, compptr, in_ptr, out_ptr);
Inc(compptr);
end;
end;
{ Downsample pixel values of a single component.
One row group is processed per call.
This version handles arbitrary integral sampling ratios, without smoothing.
Note that this version is not actually used for customary sampling ratios. }
{METHODDEF}
procedure int_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY); far;
var
inrow, outrow, h_expand, v_expand, numpix, numpix2, h, v : int;
outcol, outcol_h : JDIMENSION; { outcol_h = outcol*h_expand }
output_cols : JDIMENSION;
inptr,
outptr : JSAMPLE_PTR;
outvalue : INT32;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
h_expand := cinfo^.max_h_samp_factor div compptr^.h_samp_factor;
v_expand := cinfo^.max_v_samp_factor div compptr^.v_samp_factor;
numpix := h_expand * v_expand;
numpix2 := numpix div 2;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
expand_right_edge(input_data, cinfo^.max_v_samp_factor,
cinfo^.image_width, output_cols * h_expand);
inrow := 0;
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
outcol_h := 0;
for outcol := 0 to pred(output_cols) do
begin
outvalue := 0;
for v := 0 to pred(v_expand) do
begin
inptr := @(input_data^[inrow+v]^[outcol_h]);
for h := 0 to pred(h_expand) do
begin
Inc(outvalue, INT32 (GETJSAMPLE(inptr^)) );
Inc(inptr);
end;
end;
outptr^ := JSAMPLE ((outvalue + numpix2) div numpix);
Inc(outptr);
Inc(outcol_h, h_expand);
end;
Inc(inrow, v_expand);
end;
end;
{ Downsample pixel values of a single component.
This version handles the special case of a full-size component,
without smoothing. }
{METHODDEF}
procedure fullsize_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY); far;
begin
{ Copy the data }
jcopy_sample_rows(input_data, 0, output_data, 0,
cinfo^.max_v_samp_factor, cinfo^.image_width);
{ Edge-expand }
expand_right_edge(output_data, cinfo^.max_v_samp_factor,
cinfo^.image_width, compptr^.width_in_blocks * DCTSIZE);
end;
{ Downsample pixel values of a single component.
This version handles the common case of 2:1 horizontal and 1:1 vertical,
without smoothing.
A note about the "bias" calculations: when rounding fractional values to
integer, we do not want to always round 0.5 up to the next integer.
If we did that, we'd introduce a noticeable bias towards larger values.
Instead, this code is arranged so that 0.5 will be rounded up or down at
alternate pixel locations (a simple ordered dither pattern). }
{METHODDEF}
procedure h2v1_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY); far;
var
outrow : int;
outcol : JDIMENSION;
output_cols : JDIMENSION;
{register} inptr, outptr : JSAMPLE_PTR;
{register} bias : int;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
expand_right_edge(input_data, cinfo^.max_v_samp_factor,
cinfo^.image_width, output_cols * 2);
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
inptr := JSAMPLE_PTR(input_data^[outrow]);
bias := 0; { bias := 0,1,0,1,... for successive samples }
for outcol := 0 to pred(output_cols) do
begin
outptr^ := JSAMPLE ((GETJSAMPLE(inptr^) +
GETJSAMPLE(JSAMPROW(inptr)^[1]) + bias) shr 1);
Inc(outptr);
bias := bias xor 1; { 0=>1, 1=>0 }
Inc(inptr, 2);
end;
end;
end;
{ Downsample pixel values of a single component.
This version handles the standard case of 2:1 horizontal and 2:1 vertical,
without smoothing. }
{METHODDEF}
procedure h2v2_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY); far;
var
inrow, outrow : int;
outcol : JDIMENSION;
output_cols : JDIMENSION;
{register} inptr0, inptr1, outptr : JSAMPLE_PTR;
{register} bias : int;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
expand_right_edge(input_data, cinfo^.max_v_samp_factor,
cinfo^.image_width, output_cols * 2);
inrow := 0;
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
inptr0 := JSAMPLE_PTR(input_data^[inrow]);
inptr1 := JSAMPLE_PTR(input_data^[inrow+1]);
bias := 1; { bias := 1,2,1,2,... for successive samples }
for outcol := 0 to pred(output_cols) do
begin
outptr^ := JSAMPLE ((GETJSAMPLE(inptr0^) +
GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(inptr1^) +
GETJSAMPLE(JSAMPROW(inptr1)^[1]) + bias) shr 2);
Inc(outptr);
bias := bias xor 3; { 1=>2, 2=>1 }
Inc(inptr0, 2);
Inc(inptr1, 2);
end;
Inc(inrow, 2);
end;
end;
{$ifdef INPUT_SMOOTHING_SUPPORTED}
{ Downsample pixel values of a single component.
This version handles the standard case of 2:1 horizontal and 2:1 vertical,
with smoothing. One row of context is required. }
{METHODDEF}
procedure h2v2_smooth_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY); far;
var
inrow, outrow : int;
colctr : JDIMENSION;
output_cols : JDIMENSION;
{register} inptr0, inptr1, above_ptr, below_ptr, outptr : JSAMPLE_PTR;
membersum, neighsum, memberscale, neighscale : INT32;
var
prev_input_data : JSAMPARRAY;
prev_inptr0, prev_inptr1, prev_above_ptr, prev_below_ptr : JSAMPLE_PTR;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
prev_input_data := input_data;
Dec(JSAMPROW_PTR(prev_input_data));
expand_right_edge(prev_input_data, cinfo^.max_v_samp_factor + 2,
cinfo^.image_width, output_cols * 2);
{ We don't bother to form the individual "smoothed" input pixel values;
we can directly compute the output which is the average of the four
smoothed values. Each of the four member pixels contributes a fraction
(1-8*SF) to its own smoothed image and a fraction SF to each of the three
other smoothed pixels, therefore a total fraction (1-5*SF)/4 to the final
output. The four corner-adjacent neighbor pixels contribute a fraction
SF to just one smoothed pixel, or SF/4 to the final output; while the
eight edge-adjacent neighbors contribute SF to each of two smoothed
pixels, or SF/2 overall. In order to use integer arithmetic, these
factors are scaled by 2^16 := 65536.
Also recall that SF := smoothing_factor / 1024. }
memberscale := 16384 - cinfo^.smoothing_factor * 80; { scaled (1-5*SF)/4 }
neighscale := cinfo^.smoothing_factor * 16; { scaled SF/4 }
inrow := 0;
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
inptr0 := JSAMPLE_PTR(input_data^[inrow]);
inptr1 := JSAMPLE_PTR(input_data^[inrow+1]);
above_ptr := JSAMPLE_PTR(input_data^[inrow-1]);
below_ptr := JSAMPLE_PTR(input_data^[inrow+2]);
{ Special case for first column: pretend column -1 is same as column 0 }
membersum := GETJSAMPLE(inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[1]);
neighsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(JSAMPROW(above_ptr)^[1]) +
GETJSAMPLE(below_ptr^) + GETJSAMPLE(JSAMPROW(below_ptr)^[1]) +
GETJSAMPLE(inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[2]) +
GETJSAMPLE(inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[2]);
Inc(neighsum, neighsum);
Inc(neighsum, GETJSAMPLE(above_ptr^) +
GETJSAMPLE(JSAMPROW(above_ptr)^[2]) +
GETJSAMPLE(below_ptr^) +
GETJSAMPLE(JSAMPROW(below_ptr)^[2]) );
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(outptr);
prev_inptr0 := inptr0;
prev_inptr1 := inptr1;
Inc(prev_inptr0);
Inc(prev_inptr1);
Inc(inptr0, 2);
Inc(inptr1, 2);
prev_above_ptr := above_ptr;
prev_below_ptr := below_ptr;
Inc(above_ptr, 2);
Inc(below_ptr, 2);
Inc(prev_above_ptr, 1);
Inc(prev_below_ptr, 1);
for colctr := pred(output_cols - 2) downto 0 do
begin
{ sum of pixels directly mapped to this output element }
membersum := GETJSAMPLE(inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[1]);
{ sum of edge-neighbor pixels }
neighsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(JSAMPROW(above_ptr)^[1]) +
GETJSAMPLE(below_ptr^) + GETJSAMPLE(JSAMPROW(below_ptr)^[1]) +
GETJSAMPLE(prev_inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[2]) +
GETJSAMPLE(prev_inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[2]);
{ The edge-neighbors count twice as much as corner-neighbors }
Inc(neighsum, neighsum);
{ Add in the corner-neighbors }
Inc(neighsum, GETJSAMPLE(prev_above_ptr^) +
GETJSAMPLE(JSAMPROW(above_ptr)^[2]) +
GETJSAMPLE(prev_below_ptr^) +
GETJSAMPLE(JSAMPROW(below_ptr)^[2]) );
{ form final output scaled up by 2^16 }
membersum := membersum * memberscale + neighsum * neighscale;
{ round, descale and output it }
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(outptr);
Inc(inptr0, 2);
Inc(inptr1, 2);
Inc(prev_inptr0, 2);
Inc(prev_inptr1, 2);
Inc(above_ptr, 2);
Inc(below_ptr, 2);
Inc(prev_above_ptr, 2);
Inc(prev_below_ptr, 2);
end;
{ Special case for last column }
membersum := GETJSAMPLE(inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[1]);
neighsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(JSAMPROW(above_ptr)^[1]) +
GETJSAMPLE(below_ptr^) + GETJSAMPLE(JSAMPROW(below_ptr)^[1]) +
GETJSAMPLE(prev_inptr0^) + GETJSAMPLE(JSAMPROW(inptr0)^[1]) +
GETJSAMPLE(prev_inptr1^) + GETJSAMPLE(JSAMPROW(inptr1)^[1]);
Inc(neighsum, neighsum);
Inc(neighsum, GETJSAMPLE(prev_above_ptr^) +
GETJSAMPLE(JSAMPROW(above_ptr)^[1]) +
GETJSAMPLE(prev_below_ptr^) +
GETJSAMPLE(JSAMPROW(below_ptr)^[1]) );
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(inrow, 2);
end;
end;
{ Downsample pixel values of a single component.
This version handles the special case of a full-size component,
with smoothing. One row of context is required. }
{METHODDEF}
procedure fullsize_smooth_downsample (cinfo : j_compress_ptr;
compptr : jpeg_component_info_ptr;
input_data : JSAMPARRAY;
output_data : JSAMPARRAY); far;
var
outrow : int;
colctr : JDIMENSION;
output_cols : JDIMENSION;
{register} inptr, above_ptr, below_ptr, outptr : JSAMPLE_PTR;
membersum, neighsum, memberscale, neighscale : INT32;
colsum, lastcolsum, nextcolsum : int;
var
prev_input_data : JSAMPARRAY;
begin
output_cols := compptr^.width_in_blocks * DCTSIZE;
{ Expand input data enough to let all the output samples be generated
by the standard loop. Special-casing padded output would be more
efficient. }
prev_input_data := input_data;
Dec(JSAMPROW_PTR(prev_input_data));
expand_right_edge(prev_input_data, cinfo^.max_v_samp_factor + 2,
cinfo^.image_width, output_cols);
{ Each of the eight neighbor pixels contributes a fraction SF to the
smoothed pixel, while the main pixel contributes (1-8*SF). In order
to use integer arithmetic, these factors are multiplied by 2^16 := 65536.
Also recall that SF := smoothing_factor / 1024. }
memberscale := long(65536) - cinfo^.smoothing_factor * long(512); { scaled 1-8*SF }
neighscale := cinfo^.smoothing_factor * 64; { scaled SF }
for outrow := 0 to pred(compptr^.v_samp_factor) do
begin
outptr := JSAMPLE_PTR(output_data^[outrow]);
inptr := JSAMPLE_PTR(input_data^[outrow]);
above_ptr := JSAMPLE_PTR(input_data^[outrow-1]);
below_ptr := JSAMPLE_PTR(input_data^[outrow+1]);
{ Special case for first column }
colsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(below_ptr^) +
GETJSAMPLE(inptr^);
Inc(above_ptr);
Inc(below_ptr);
membersum := GETJSAMPLE(inptr^);
Inc(inptr);
nextcolsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(below_ptr^) +
GETJSAMPLE(inptr^);
neighsum := colsum + (colsum - membersum) + nextcolsum;
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(outptr);
lastcolsum := colsum; colsum := nextcolsum;
for colctr := pred(output_cols - 2) downto 0 do
begin
membersum := GETJSAMPLE(inptr^);
Inc(inptr);
Inc(above_ptr);
Inc(below_ptr);
nextcolsum := GETJSAMPLE(above_ptr^) + GETJSAMPLE(below_ptr^) +
GETJSAMPLE(inptr^);
neighsum := lastcolsum + (colsum - membersum) + nextcolsum;
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
Inc(outptr);
lastcolsum := colsum; colsum := nextcolsum;
end;
{ Special case for last column }
membersum := GETJSAMPLE(inptr^);
neighsum := lastcolsum + (colsum - membersum) + colsum;
membersum := membersum * memberscale + neighsum * neighscale;
outptr^ := JSAMPLE ((membersum + 32768) shr 16);
end;
end;
{$endif} { INPUT_SMOOTHING_SUPPORTED }
{ Module initialization routine for downsampling.
Note that we must select a routine for each component. }
{GLOBAL}
procedure jinit_downsampler (cinfo : j_compress_ptr);
var
downsample : my_downsample_ptr;
ci : int;
compptr : jpeg_component_info_ptr;
{$ifdef INPUT_SMOOTHING_SUPPORTED}
smoothok : boolean;
{$endif}
begin
{$ifdef INPUT_SMOOTHING_SUPPORTED}
smoothok := TRUE;
{$endif}
downsample := my_downsample_ptr(cinfo^.mem^.alloc_small(j_common_ptr(cinfo),
JPOOL_IMAGE, SIZEOF(my_downsampler)));
cinfo^.downsample := jpeg_downsampler_ptr (downsample);
downsample^.pub.start_pass := start_pass_downsample;
downsample^.pub.downsample := sep_downsample;
downsample^.pub.need_context_rows := FALSE;
if (cinfo^.CCIR601_sampling)
then ERREXIT(j_common_ptr(cinfo), JERR_CCIR601_NOTIMPL);
{------------- Verify we can handle the sampling factors, and set up }
{ method pointers }
compptr := cinfo^.comp_info;
for ci := 0 to pred(cinfo^.num_components)
do begin
if (compptr^.h_samp_factor = cinfo^.max_h_samp_factor)
and (compptr^.v_samp_factor = cinfo^.max_v_samp_factor)
then begin
{$ifdef INPUT_SMOOTHING_SUPPORTED}
if (cinfo^.smoothing_factor <> 0)
then begin
downsample^.methods[ci] := fullsize_smooth_downsample;
downsample^.pub.need_context_rows := TRUE;
end
else
{$endif}
downsample^.methods[ci] := fullsize_downsample;
end
else if (compptr^.h_samp_factor * 2 = cinfo^.max_h_samp_factor)
and (compptr^.v_samp_factor = cinfo^.max_v_samp_factor)
then begin
{$ifdef INPUT_SMOOTHING_SUPPORTED}
smoothok := FALSE;
{$endif}
downsample^.methods[ci] := h2v1_downsample;
end
else if (compptr^.h_samp_factor * 2 = cinfo^.max_h_samp_factor)
and (compptr^.v_samp_factor * 2 = cinfo^.max_v_samp_factor)
then begin
{$ifdef INPUT_SMOOTHING_SUPPORTED}
if (cinfo^.smoothing_factor <> 0)
then begin
downsample^.methods[ci] := h2v2_smooth_downsample;
downsample^.pub.need_context_rows := TRUE;
end
else
{$endif}
downsample^.methods[ci] := h2v2_downsample;
end
else if ((cinfo^.max_h_samp_factor mod compptr^.h_samp_factor) = 0)
and ((cinfo^.max_v_samp_factor mod compptr^.v_samp_factor) = 0)
then begin
{$ifdef INPUT_SMOOTHING_SUPPORTED}
smoothok := FALSE;
{$endif}
downsample^.methods[ci] := int_downsample;
end
else ERREXIT(j_common_ptr(cinfo), JERR_FRACT_SAMPLE_NOTIMPL);
Inc(compptr);
end;
{$ifdef INPUT_SMOOTHING_SUPPORTED}
if (cinfo^.smoothing_factor <> 0) and (not smoothok)
then TRACEMS(j_common_ptr(cinfo), 0, JTRC_SMOOTH_NOTIMPL);
{$endif}
end {procedure jinit_downsampler};
end.