-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathJDCOEFCT.NEW
898 lines (812 loc) · 28 KB
/
JDCOEFCT.NEW
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
Unit JDCoefCt;
{ This file contains the coefficient buffer controller for decompression.
This controller is the top level of the JPEG decompressor proper.
The coefficient buffer lies between entropy decoding and inverse-DCT steps.
In buffered-image mode, this controller is the interface between
input-oriented processing and output-oriented processing.
Also, the input side (only) is used when reading a file for transcoding. }
{ Original: jdcoefct.c ; Copyright (C) 1994-1996, Thomas G. Lane. }
interface
uses
jmorecfg,
jinclude,
jdeferr,
jerror,
jutils,
jpeglib;
{$I jconfig.inc}
{GLOBAL}
procedure jinit_d_coef_controller (cinfo : j_decompress_ptr;
need_full_buffer : boolean);
implementation
{ Block smoothing is only applicable for progressive JPEG, so: }
{$ifndef D_PROGRESSIVE_SUPPORTED}
{$undef BLOCK_SMOOTHING_SUPPORTED}
{$endif}
{ Private buffer controller object }
{$ifdef BLOCK_SMOOTHING_SUPPORTED}
const
SAVED_COEFS = 6; { we save coef_bits[0..5] }
type
Latch = array[0..SAVED_COEFS-1] of int;
Latch_ptr = ^Latch;
{$endif}
type
my_coef_ptr = ^my_coef_controller;
my_coef_controller = record
pub : jpeg_d_coef_controller; { public fields }
{ These variables keep track of the current location of the input side. }
{ cinfo^.input_iMCU_row is also used for this. }
MCU_ctr : JDIMENSION; { counts MCUs processed in current row }
MCU_vert_offset : int; { counts MCU rows within iMCU row }
MCU_rows_per_iMCU_row : int; { number of such rows needed }
{ The output side's location is represented by cinfo^.output_iMCU_row. }
{ In single-pass modes, it's sufficient to buffer just one MCU.
We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
and let the entropy decoder write into that workspace each time.
(On 80x86, the workspace is FAR even though it's not really very big;
this is to keep the module interfaces unchanged when a large coefficient
buffer is necessary.)
In multi-pass modes, this array points to the current MCU's blocks
within the virtual arrays; it is used only by the input side. }
MCU_buffer : array[0..D_MAX_BLOCKS_IN_MCU-1] of JBLOCKROW;
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{ In multi-pass modes, we need a virtual block array for each component. }
whole_image : jvirt_barray_tbl;
{$endif}
{$ifdef BLOCK_SMOOTHING_SUPPORTED}
{ When doing block smoothing, we latch coefficient Al values here }
coef_bits_latch : Latch_Ptr;
{$endif}
end;
{ Forward declarations }
{METHODDEF}
function decompress_onepass (cinfo : j_decompress_ptr;
output_buf : JSAMPIMAGE) : int; far; forward;
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{METHODDEF}
function decompress_data (cinfo : j_decompress_ptr;
output_buf : JSAMPIMAGE) : int; far; forward;
{$endif}
{$ifdef BLOCK_SMOOTHING_SUPPORTED}
{LOCAL}
function smoothing_ok (cinfo : j_decompress_ptr) : boolean; forward;
{METHODDEF}
function decompress_smooth_data (cinfo : j_decompress_ptr;
output_buf : JSAMPIMAGE) : int; far; forward;
{$endif}
{LOCAL}
procedure start_iMCU_row (cinfo : j_decompress_ptr);
{ Reset within-iMCU-row counters for a new row (input side) }
var
coef : my_coef_ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
{ In an interleaved scan, an MCU row is the same as an iMCU row.
In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
But at the bottom of the image, process only what's left. }
if (cinfo^.comps_in_scan > 1) then
begin
coef^.MCU_rows_per_iMCU_row := 1;
end
else
begin
if (cinfo^.input_iMCU_row < (cinfo^.total_iMCU_rows-1)) then
coef^.MCU_rows_per_iMCU_row := cinfo^.cur_comp_info[0]^.v_samp_factor
else
coef^.MCU_rows_per_iMCU_row := cinfo^.cur_comp_info[0]^.last_row_height;
end;
coef^.MCU_ctr := 0;
coef^.MCU_vert_offset := 0;
end;
{ Initialize for an input processing pass. }
{METHODDEF}
procedure start_input_pass (cinfo : j_decompress_ptr); far;
begin
cinfo^.input_iMCU_row := 0;
start_iMCU_row(cinfo);
end;
{ Initialize for an output processing pass. }
{METHODDEF}
procedure start_output_pass (cinfo : j_decompress_ptr); far;
{$ifdef BLOCK_SMOOTHING_SUPPORTED} { Meister }
var
coef : my_coef_ptr;
{$endif}
begin
{$ifdef BLOCK_SMOOTHING_SUPPORTED}
coef := my_coef_ptr (cinfo^.coef);
{ If multipass, check to see whether to use block smoothing on this pass }
if (coef^.pub.coef_arrays <> NIL) then
begin
if (cinfo^.do_block_smoothing) and smoothing_ok(cinfo) then
coef^.pub.decompress_data := decompress_smooth_data
else
coef^.pub.decompress_data := decompress_data;
end;
{$endif}
cinfo^.output_iMCU_row := 0;
end;
{ Decompress and return some data in the single-pass case.
Always attempts to emit one fully interleaved MCU row ("iMCU" row).
Input and output must run in lockstep since we have only a one-MCU buffer.
Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
NB: output_buf contains a plane for each component in image.
For single pass, this is the same as the components in the scan. }
{METHODDEF}
function decompress_onepass (cinfo : j_decompress_ptr;
output_buf : JSAMPIMAGE) : int;
var
coef : my_coef_ptr;
MCU_col_num : JDIMENSION; { index of current MCU within row }
last_MCU_col : JDIMENSION;
last_iMCU_row : JDIMENSION;
blkn, ci, xindex, yindex, yoffset, useful_width : int;
output_ptr : JSAMPARRAY;
start_col, output_col : JDIMENSION;
compptr : jpeg_component_info_ptr;
inverse_DCT : inverse_DCT_method_ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
last_MCU_col := cinfo^.MCUs_per_row - 1;
last_iMCU_row := cinfo^.total_iMCU_rows - 1;
{ Loop to process as much as one whole iMCU row }
for yoffset := coef^.MCU_vert_offset to pred(coef^.MCU_rows_per_iMCU_row) do
begin
for MCU_col_num := coef^.MCU_ctr to last_MCU_col do
begin
{ Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. }
jzero_far( coef^.MCU_buffer[0],
size_t (cinfo^.blocks_in_MCU * SIZEOF(JBLOCK)));
if (not cinfo^.entropy^.decode_mcu (cinfo, coef^.MCU_buffer)) then
begin
{ Suspension forced; update state counters and exit }
coef^.MCU_vert_offset := yoffset;
coef^.MCU_ctr := MCU_col_num;
decompress_onepass := JPEG_SUSPENDED;
exit;
end;
{ Determine where data should go in output_buf and do the IDCT thing.
We skip dummy blocks at the right and bottom edges (but blkn gets
incremented past them!). Note the inner loop relies on having
allocated the MCU_buffer[] blocks sequentially. }
blkn := 0; { index of current DCT block within MCU }
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
compptr := cinfo^.cur_comp_info[ci];
{ Don't bother to IDCT an uninteresting component. }
if (not compptr^.component_needed) then
begin
Inc(blkn, compptr^.MCU_blocks);
continue;
end;
inverse_DCT := cinfo^.idct^.inverse_DCT[compptr^.component_index];
if (MCU_col_num < last_MCU_col) then
useful_width := compptr^.MCU_width
else
useful_width := compptr^.last_col_width;
output_ptr := JSAMPARRAY(@ output_buf^[ci]^
[yoffset * compptr^.DCT_scaled_size]);
start_col := MCU_col_num * compptr^.MCU_sample_width;
for yindex := 0 to pred(compptr^.MCU_height) do
begin
if (cinfo^.input_iMCU_row < last_iMCU_row) or
(yoffset+yindex < compptr^.last_row_height) then
begin
output_col := start_col;
for xindex := 0 to pred(useful_width) do
begin
inverse_DCT (cinfo, compptr,
JCOEFPTR(coef^.MCU_buffer[blkn+xindex]),
output_ptr, output_col);
Inc(output_col, compptr^.DCT_scaled_size);
end;
end;
Inc(blkn, compptr^.MCU_width);
Inc(JSAMPROW_PTR(output_ptr), compptr^.DCT_scaled_size);
end;
end;
end;
{ Completed an MCU row, but perhaps not an iMCU row }
coef^.MCU_ctr := 0;
end;
{ Completed the iMCU row, advance counters for next one }
Inc(cinfo^.output_iMCU_row);
Inc(cinfo^.input_iMCU_row);
if (cinfo^.input_iMCU_row < cinfo^.total_iMCU_rows) then
begin
start_iMCU_row(cinfo);
decompress_onepass := JPEG_ROW_COMPLETED;
exit;
end;
{ Completed the scan }
cinfo^.inputctl^.finish_input_pass (cinfo);
decompress_onepass := JPEG_SCAN_COMPLETED;
end;
{ Dummy consume-input routine for single-pass operation. }
{METHODDEF}
function dummy_consume_data (cinfo : j_decompress_ptr) : int; far;
begin
dummy_consume_data := JPEG_SUSPENDED; { Always indicate nothing was done }
end;
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{ Consume input data and store it in the full-image coefficient buffer.
We read as much as one fully interleaved MCU row ("iMCU" row) per call,
ie, v_samp_factor block rows for each component in the scan.
Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.}
{METHODDEF}
function consume_data (cinfo : j_decompress_ptr) : int; far;
var
coef : my_coef_ptr;
MCU_col_num : JDIMENSION; { index of current MCU within row }
blkn, ci, xindex, yindex, yoffset : int;
start_col : JDIMENSION;
buffer : array[0..MAX_COMPS_IN_SCAN-1] of JBLOCKARRAY;
buffer_ptr : JBLOCKROW;
compptr : jpeg_component_info_ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
{ Align the virtual buffers for the components used in this scan. }
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
compptr := cinfo^.cur_comp_info[ci];
buffer[ci] := cinfo^.mem^.access_virt_barray
(j_common_ptr (cinfo), coef^.whole_image[compptr^.component_index],
cinfo^.input_iMCU_row * compptr^.v_samp_factor,
JDIMENSION (compptr^.v_samp_factor), TRUE);
{ Note: entropy decoder expects buffer to be zeroed,
but this is handled automatically by the memory manager
because we requested a pre-zeroed array. }
end;
{ Loop to process one whole iMCU row }
for yoffset := coef^.MCU_vert_offset to pred(coef^.MCU_rows_per_iMCU_row) do
begin
for MCU_col_num := coef^.MCU_ctr to pred(cinfo^.MCUs_per_row) do
begin
{ Construct list of pointers to DCT blocks belonging to this MCU }
blkn := 0; { index of current DCT block within MCU }
for ci := 0 to pred(cinfo^.comps_in_scan) do
begin
compptr := cinfo^.cur_comp_info[ci];
start_col := MCU_col_num * compptr^.MCU_width;
for yindex := 0 to pred(compptr^.MCU_height) do
begin
buffer_ptr := JBLOCKROW(@ buffer[ci]^[yindex+yoffset]^[start_col]);
for xindex := 0 to pred(compptr^.MCU_width) do
begin
coef^.MCU_buffer[blkn] := buffer_ptr;
Inc(blkn);
Inc(JBLOCK_PTR(buffer_ptr));
end;
end;
end;
{ Try to fetch the MCU. }
if (not cinfo^.entropy^.decode_mcu (cinfo, coef^.MCU_buffer)) then
begin
{ Suspension forced; update state counters and exit }
coef^.MCU_vert_offset := yoffset;
coef^.MCU_ctr := MCU_col_num;
consume_data := JPEG_SUSPENDED;
exit;
end;
end;
{ Completed an MCU row, but perhaps not an iMCU row }
coef^.MCU_ctr := 0;
end;
{ Completed the iMCU row, advance counters for next one }
Inc(cinfo^.input_iMCU_row);
if (cinfo^.input_iMCU_row < cinfo^.total_iMCU_rows) then
begin
start_iMCU_row(cinfo);
consume_data := JPEG_ROW_COMPLETED;
exit;
end;
{ Completed the scan }
cinfo^.inputctl^.finish_input_pass (cinfo);
consume_data := JPEG_SCAN_COMPLETED;
end;
{ Decompress and return some data in the multi-pass case.
Always attempts to emit one fully interleaved MCU row ("iMCU" row).
Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
NB: output_buf contains a plane for each component in image. }
{METHODDEF}
function decompress_data (cinfo : j_decompress_ptr;
output_buf : JSAMPIMAGE) : int;
var
coef : my_coef_ptr;
last_iMCU_row : JDIMENSION;
block_num : JDIMENSION;
ci, block_row, block_rows : int;
buffer : JBLOCKARRAY;
buffer_ptr : JBLOCKROW;
output_ptr : JSAMPARRAY;
output_col : JDIMENSION;
compptr : jpeg_component_info_ptr;
inverse_DCT : inverse_DCT_method_ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
last_iMCU_row := cinfo^.total_iMCU_rows - 1;
{ Force some input to be done if we are getting ahead of the input. }
while (cinfo^.input_scan_number < cinfo^.output_scan_number) or
((cinfo^.input_scan_number = cinfo^.output_scan_number) and
(cinfo^.input_iMCU_row <= cinfo^.output_iMCU_row)) do
begin
if (cinfo^.inputctl^.consume_input(cinfo) = JPEG_SUSPENDED) then
begin
decompress_data := JPEG_SUSPENDED;
exit;
end;
end;
{ OK, output from the virtual arrays. }
compptr := cinfo^.comp_info;
for ci := 0 to pred(cinfo^.num_components) do
begin
{ Don't bother to IDCT an uninteresting component. }
if (not compptr^.component_needed) then
continue;
{ Align the virtual buffer for this component. }
buffer := cinfo^.mem^.access_virt_barray
(j_common_ptr (cinfo), coef^.whole_image[ci],
cinfo^.output_iMCU_row * compptr^.v_samp_factor,
JDIMENSION (compptr^.v_samp_factor), FALSE);
{ Count non-dummy DCT block rows in this iMCU row. }
if (cinfo^.output_iMCU_row < last_iMCU_row) then
block_rows := compptr^.v_samp_factor
else
begin
{ NB: can't use last_row_height here; it is input-side-dependent! }
block_rows := int(compptr^.height_in_blocks mod compptr^.v_samp_factor);
if (block_rows = 0) then
block_rows := compptr^.v_samp_factor;
end;
inverse_DCT := cinfo^.idct^.inverse_DCT[ci];
output_ptr := output_buf^[ci];
{ Loop over all DCT blocks to be processed. }
for block_row := 0 to pred(block_rows) do
begin
buffer_ptr := buffer^[block_row];
output_col := 0;
for block_num := 0 to pred(compptr^.width_in_blocks) do
begin
inverse_DCT (cinfo, compptr, JCOEFPTR (buffer_ptr),
output_ptr, output_col);
Inc(JBLOCK_PTR(buffer_ptr));
Inc(output_col, compptr^.DCT_scaled_size);
end;
Inc(JSAMPROW_PTR(output_ptr), compptr^.DCT_scaled_size);
end;
Inc(compptr);
end;
Inc(cinfo^.output_iMCU_row);
if (cinfo^.output_iMCU_row < cinfo^.total_iMCU_rows) then
begin
decompress_data := JPEG_ROW_COMPLETED;
exit;
end;
decompress_data := JPEG_SCAN_COMPLETED;
end;
{$endif} { D_MULTISCAN_FILES_SUPPORTED }
{$ifdef BLOCK_SMOOTHING_SUPPORTED}
{ This code applies interblock smoothing as described by section K.8
of the JPEG standard: the first 5 AC coefficients are estimated from
the DC values of a DCT block and its 8 neighboring blocks.
We apply smoothing only for progressive JPEG decoding, and only if
the coefficients it can estimate are not yet known to full precision. }
{ Natural-order array positions of the first 5 zigzag-order coefficients }
const
Q01_POS = 1;
Q10_POS = 8;
Q20_POS = 16;
Q11_POS = 9;
Q02_POS = 2;
{ Determine whether block smoothing is applicable and safe.
We also latch the current states of the coef_bits[] entries for the
AC coefficients; otherwise, if the input side of the decompressor
advances into a new scan, we might think the coefficients are known
more accurately than they really are. }
{LOCAL}
function smoothing_ok (cinfo : j_decompress_ptr) : boolean;
var
coef : my_coef_ptr;
smoothing_useful : boolean;
ci, coefi : int;
compptr : jpeg_component_info_ptr;
qtable : JQUANT_TBL_PTR;
coef_bits : coef_bits_ptr;
coef_bits_latch : Latch_Ptr;
begin
coef := my_coef_ptr (cinfo^.coef);
smoothing_useful := FALSE;
if (not cinfo^.progressive_mode) or (cinfo^.coef_bits = NIL) then
begin
smoothing_ok := FALSE;
exit;
end;
{ Allocate latch area if not already done }
if (coef^.coef_bits_latch = NIL) then
coef^.coef_bits_latch := Latch_Ptr(
cinfo^.mem^.alloc_small (j_common_ptr (cinfo), JPOOL_IMAGE,
cinfo^.num_components *
(SAVED_COEFS * SIZEOF(int))) );
coef_bits_latch := (coef^.coef_bits_latch);
compptr := cinfo^.comp_info;
for ci := 0 to pred(cinfo^.num_components) do
begin
{ All components' quantization values must already be latched. }
qtable := compptr^.quant_table;
if (qtable = NIL) then
begin
smoothing_ok := FALSE;
exit;
end;
{ Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. }
if (qtable^.quantval[0] = 0) or
(qtable^.quantval[Q01_POS] = 0) or
(qtable^.quantval[Q10_POS] = 0) or
(qtable^.quantval[Q20_POS] = 0) or
(qtable^.quantval[Q11_POS] = 0) or
(qtable^.quantval[Q02_POS] = 0) then
begin
smoothing_ok := FALSE;
exit;
end;
{ DC values must be at least partly known for all components. }
coef_bits := @cinfo^.coef_bits^[ci];
if (coef_bits^[0] < 0) then
begin
smoothing_ok := FALSE;
exit;
end;
{ Block smoothing is helpful if some AC coefficients remain inaccurate. }
for coefi := 1 to 5 do
begin
coef_bits_latch^[coefi] := coef_bits^[coefi];
if (coef_bits^[coefi] <> 0) then
smoothing_useful := TRUE;
end;
Inc(coef_bits_latch {SAVED_COEFS});
Inc(compptr);
end;
smoothing_ok := smoothing_useful;
end;
{ Variant of decompress_data for use when doing block smoothing. }
{METHODDEF}
function decompress_smooth_data (cinfo : j_decompress_ptr;
output_buf : JSAMPIMAGE) : int;
var
coef : my_coef_ptr;
last_iMCU_row : JDIMENSION;
block_num, last_block_column : JDIMENSION;
ci, block_row, block_rows, access_rows : int;
buffer : JBLOCKARRAY;
buffer_ptr, prev_block_row, next_block_row : JBLOCKROW;
output_ptr : JSAMPARRAY;
output_col : JDIMENSION;
compptr : jpeg_component_info_ptr;
inverse_DCT : inverse_DCT_method_ptr;
first_row, last_row : boolean;
workspace : JBLOCK;
coef_bits : Latch_Ptr; { coef_bits_ptr; }
quanttbl : JQUANT_TBL_PTR;
Q00,Q01,Q02,Q10,Q11,Q20, num : INT32;
DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9 : int;
Al, pred : int;
var
delta : JDIMENSION;
begin
coef := my_coef_ptr (cinfo^.coef);
last_iMCU_row := cinfo^.total_iMCU_rows - 1;
{ Force some input to be done if we are getting ahead of the input. }
while (cinfo^.input_scan_number <= cinfo^.output_scan_number) and
(not cinfo^.inputctl^.eoi_reached) do
begin
if (cinfo^.input_scan_number = cinfo^.output_scan_number) then
begin
{ If input is working on current scan, we ordinarily want it to
have completed the current row. But if input scan is DC,
we want it to keep one row ahead so that next block row's DC
values are up to date. }
if (cinfo^.Ss = 0) then
delta := 1
else
delta := 0;
if (cinfo^.input_iMCU_row > cinfo^.output_iMCU_row+delta) then
break;
end;
if (cinfo^.inputctl^.consume_input(cinfo) = JPEG_SUSPENDED) then
begin
decompress_smooth_data := JPEG_SUSPENDED;
exit;
end;
end;
{ OK, output from the virtual arrays. }
compptr := cinfo^.comp_info;
for ci := 0 to (cinfo^.num_components-1) do
begin
{ Don't bother to IDCT an uninteresting component. }
if (not compptr^.component_needed) then
continue;
{ Count non-dummy DCT block rows in this iMCU row. }
if (cinfo^.output_iMCU_row < last_iMCU_row) then
begin
block_rows := compptr^.v_samp_factor;
access_rows := block_rows * 2; { this and next iMCU row }
last_row := FALSE;
end
else
begin
{ NB: can't use last_row_height here; it is input-side-dependent! }
block_rows := int (compptr^.height_in_blocks mod compptr^.v_samp_factor);
if (block_rows = 0) then
block_rows := compptr^.v_samp_factor;
access_rows := block_rows; { this iMCU row only }
last_row := TRUE;
end;
{ Align the virtual buffer for this component. }
if (cinfo^.output_iMCU_row > 0) then
begin
Inc(access_rows, compptr^.v_samp_factor); { prior iMCU row too }
buffer := cinfo^.mem^.access_virt_barray
(j_common_ptr (cinfo), coef^.whole_image[ci],
(cinfo^.output_iMCU_row - 1) * compptr^.v_samp_factor,
JDIMENSION (access_rows), FALSE);
Inc(JBLOCKROW_PTR(buffer), compptr^.v_samp_factor); { point to current iMCU row }
first_row := FALSE;
end
else
begin
buffer := cinfo^.mem^.access_virt_barray
(j_common_ptr (cinfo), coef^.whole_image[ci],
JDIMENSION (0), JDIMENSION (access_rows), FALSE);
first_row := TRUE;
end;
{ Fetch component-dependent info }
coef_bits := coef^.coef_bits_latch;
Inc(coef_bits, ci); { ci * SAVED_COEFS}
quanttbl := compptr^.quant_table;
Q00 := quanttbl^.quantval[0];
Q01 := quanttbl^.quantval[Q01_POS];
Q10 := quanttbl^.quantval[Q10_POS];
Q20 := quanttbl^.quantval[Q20_POS];
Q11 := quanttbl^.quantval[Q11_POS];
Q02 := quanttbl^.quantval[Q02_POS];
inverse_DCT := cinfo^.idct^.inverse_DCT[ci];
output_ptr := output_buf^[ci];
{ Loop over all DCT blocks to be processed. }
for block_row := 0 to (block_rows-1) do
begin
buffer_ptr := buffer^[block_row];
if (first_row) and (block_row = 0) then
prev_block_row := buffer_ptr
else
prev_block_row := buffer^[block_row-1];
if (last_row) and (block_row = block_rows-1) then
next_block_row := buffer_ptr
else
next_block_row := buffer^[block_row+1];
{ We fetch the surrounding DC values using a sliding-register approach.
Initialize all nine here so as to do the right thing on narrow pics.}
DC3 := int(prev_block_row^[0][0]);
DC2 := DC3;
DC1 := DC2;
DC6 := int(buffer_ptr^[0][0]);
DC5 := DC6;
DC4 := DC5;
DC9 := int(next_block_row^[0][0]);
DC8 := DC9;
DC7 := DC8 ;
output_col := 0;
last_block_column := compptr^.width_in_blocks - 1;
for block_num := 0 to last_block_column do
begin
{ Fetch current DCT block into workspace so we can modify it. }
jcopy_block_row(buffer_ptr, JBLOCKROW (@workspace), JDIMENSION(1));
{ Update DC values }
if (block_num < last_block_column) then
begin
DC3 := int (prev_block_row^[1][0]);
DC6 := int (buffer_ptr^[1][0]);
DC9 := int (next_block_row^[1][0]);
end;
{ Compute coefficient estimates per K.8.
An estimate is applied only if coefficient is still zero,
and is not known to be fully accurate. }
{ AC01 }
Al := coef_bits^[1];
if (Al <> 0) and (workspace[1] = 0) then
begin
num := 36 * Q00 * (DC4 - DC6);
if (num >= 0) then
begin
pred := int (((Q01 shl 7) + num) div (Q01 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
end
else
begin
pred := int (((Q01 shl 7) - num) div (Q01 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
pred := -pred;
end;
workspace[1] := JCOEF (pred);
end;
{ AC10 }
Al := coef_bits^[2];
if (Al <> 0) and (workspace[8] = 0) then
begin
num := 36 * Q00 * (DC2 - DC8);
if (num >= 0) then
begin
pred := int (((Q10 shl 7) + num) div (Q10 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
end
else
begin
pred := int (((Q10 shl 7) - num) div (Q10 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
pred := -pred;
end;
workspace[8] := JCOEF (pred);
end;
{ AC20 }
Al := coef_bits^[3];
if (Al <> 0) and (workspace[16] = 0) then
begin
num := 9 * Q00 * (DC2 + DC8 - 2*DC5);
if (num >= 0) then
begin
pred := int (((Q20 shl 7) + num) div (Q20 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
end
else
begin
pred := int (((Q20 shl 7) - num) div (Q20 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
pred := -pred;
end;
workspace[16] := JCOEF (pred);
end;
{ AC11 }
Al := coef_bits^[4];
if (Al <> 0) and (workspace[9] = 0) then
begin
num := 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
if (num >= 0) then
begin
pred := int (((Q11 shl 7) + num) div (Q11 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
end
else
begin
pred := int (((Q11 shl 7) - num) div (Q11 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
pred := -pred;
end;
workspace[9] := JCOEF (pred);
end;
{ AC02 }
Al := coef_bits^[5];
if (Al <> 0) and (workspace[2] = 0) then
begin
num := 9 * Q00 * (DC4 + DC6 - 2*DC5);
if (num >= 0) then
begin
pred := int (((Q02 shl 7) + num) div (Q02 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
end
else
begin
pred := int (((Q02 shl 7) - num) div (Q02 shl 8));
if (Al > 0) and (pred >= (1 shl Al)) then
pred := (1 shl Al)-1;
pred := -pred;
end;
workspace[2] := JCOEF (pred);
end;
{ OK, do the IDCT }
inverse_DCT (cinfo, compptr, JCOEFPTR (@workspace),
output_ptr, output_col);
{ Advance for next column }
DC1 := DC2; DC2 := DC3;
DC4 := DC5; DC5 := DC6;
DC7 := DC8; DC8 := DC9;
Inc(JBLOCK_PTR(buffer_ptr));
Inc(JBLOCK_PTR(prev_block_row));
Inc(JBLOCK_PTR(next_block_row));
Inc(output_col, compptr^.DCT_scaled_size);
end;
Inc(JSAMPROW_PTR(output_ptr), compptr^.DCT_scaled_size);
end;
Inc(compptr);
end;
Inc(cinfo^.output_iMCU_row);
if (cinfo^.output_iMCU_row < cinfo^.total_iMCU_rows) then
begin
decompress_smooth_data := JPEG_ROW_COMPLETED;
exit;
end;
decompress_smooth_data := JPEG_SCAN_COMPLETED;
end;
{$endif} { BLOCK_SMOOTHING_SUPPORTED }
{ Initialize coefficient buffer controller. }
{GLOBAL}
procedure jinit_d_coef_controller (cinfo : j_decompress_ptr;
need_full_buffer : boolean);
var
coef : my_coef_ptr;
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
var
ci, access_rows : int;
compptr : jpeg_component_info_ptr;
{$endif}
var
buffer : JBLOCK_PTR;
i : int;
begin
coef := my_coef_ptr(
cinfo^.mem^.alloc_small (j_common_ptr (cinfo), JPOOL_IMAGE,
SIZEOF(my_coef_controller)) );
cinfo^.coef := jpeg_d_coef_controller_ptr(coef);
coef^.pub.start_input_pass := start_input_pass;
coef^.pub.start_output_pass := start_output_pass;
{$ifdef BLOCK_SMOOTHING_SUPPORTED}
coef^.coef_bits_latch := NIL;
{$endif}
{ Create the coefficient buffer. }
if (need_full_buffer) then
begin
{$ifdef D_MULTISCAN_FILES_SUPPORTED}
{ Allocate a full-image virtual array for each component, }
{ padded to a multiple of samp_factor DCT blocks in each direction. }
{ Note we ask for a pre-zeroed array. }
compptr := cinfo^.comp_info;
for ci := 0 to pred(cinfo^.num_components) do
begin
access_rows := compptr^.v_samp_factor;
{$ifdef BLOCK_SMOOTHING_SUPPORTED}
{ If block smoothing could be used, need a bigger window }
if (cinfo^.progressive_mode) then
access_rows := access_rows * 3;
{$endif}
coef^.whole_image[ci] := cinfo^.mem^.request_virt_barray
(j_common_ptr (cinfo), JPOOL_IMAGE, TRUE,
JDIMENSION (jround_up( long(compptr^.width_in_blocks),
long(compptr^.h_samp_factor) )),
JDIMENSION (jround_up( long(compptr^.height_in_blocks),
long(compptr^.v_samp_factor) )),
JDIMENSION (access_rows));
Inc(compptr);
end;
coef^.pub.consume_data := consume_data;
coef^.pub.decompress_data := decompress_data;
coef^.pub.coef_arrays := @(coef^.whole_image);
{ link to virtual arrays }
{$else}
ERREXIT(j_common_ptr(cinfo), JERR_NOT_COMPILED);
{$endif}
end
else
begin
{ We only need a single-MCU buffer. }
buffer := JBLOCK_PTR (
cinfo^.mem^.alloc_large (j_common_ptr (cinfo), JPOOL_IMAGE,
D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK)) );
for i := 0 to pred(D_MAX_BLOCKS_IN_MCU) do
begin
coef^.MCU_buffer[i] := JBLOCKROW(buffer);
Inc(buffer);
end;
coef^.pub.consume_data := dummy_consume_data;
coef^.pub.decompress_data := decompress_onepass;
coef^.pub.coef_arrays := NIL; { flag for no virtual arrays }
end;
end;
end.