forked from epi2me-labs/wf-single-cell
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.nf
323 lines (289 loc) · 10.4 KB
/
main.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
#!/usr/bin/env nextflow
import groovy.json.JsonBuilder
import nextflow.util.BlankSeparatedList;
nextflow.enable.dsl = 2
include { fastq_ingress; xam_ingress } from './lib/ingress'
include { preprocess } from './subworkflows/preprocess'
include { process_bams } from './subworkflows/process_bams'
OPTIONAL_FILE = file("$projectDir/data/OPTIONAL_FILE")
process getVersions {
label "singlecell"
cpus 1
memory "1 GB"
output:
path "versions.txt"
script:
"""
python -c "import pysam; print(f'pysam,{pysam.__version__}')" >> versions.txt
python -c "import parasail; print(f'parasail,{parasail.__version__}')" >> versions.txt
python -c "import pandas; print(f'pandas,{pandas.__version__}')" >> versions.txt
python -c "import rapidfuzz; print(f'rapidfuzz,{rapidfuzz.__version__}')" >> versions.txt
python -c "import sklearn; print(f'scikit-learn,{sklearn.__version__}')" >> versions.txt
fastcat --version | sed 's/^/fastcat,/' >> versions.txt
minimap2 --version | sed 's/^/minimap2,/' >> versions.txt
samtools --version | head -n 1 | sed 's/ /,/' >> versions.txt
bedtools --version | head -n 1 | sed 's/ /,/' >> versions.txt
gffread --version | sed 's/^/gffread,/' >> versions.txt
seqkit version | head -n 1 | sed 's/ /,/' >> versions.txt
stringtie --version | sed 's/^/stringtie,/' >> versions.txt
gffcompare --version | head -n 1 | sed 's/ /,/' >> versions.txt
"""
}
process getParams {
label "singlecell"
cpus 1
memory "1 GB"
output:
path "params.json"
script:
def paramsJSON = new JsonBuilder(params).toPrettyString()
"""
# Output nextflow params object to JSON
echo '$paramsJSON' > params.json
"""
}
process makeReport {
label "wf_common"
cpus 1
memory "32 GB"
publishDir "${params.out_dir}", mode: 'copy', pattern: "wf-single-cell-report.html"
input:
val metadata
path 'versions'
path 'params.csv'
path stats, stageAs: "stats_*"
path 'survival.tsv'
path umap_dirs
path images
path umap_genes
val wf_version
path 'bam_stats.tsv'
output:
path "wf-single-cell-*.html"
script:
String report_name = "wf-single-cell-report.html"
String metadata = new JsonBuilder(metadata).toPrettyString()
"""
echo '${metadata}' > metadata.json
workflow-glue report \
$report_name \
--stats $stats \
--params params.csv \
--versions versions \
--survival survival.tsv \
--umap_dirs $umap_dirs \
--images $images \
--umap_genes $umap_genes \
--metadata metadata.json \
--wf_version $wf_version \
--metadata metadata.json \
--bam_stats bam_stats.tsv
"""
}
process parse_kit_metadata {
label "singlecell"
cpus 1
memory "1 GB"
input:
path 'sample_ids'
path sc_sample_sheet
path kit_config, stageAs: 'kit_config.csv'
output:
path "merged.csv"
script:
if (sc_sample_sheet.name != "OPTIONAL_FILE"){
"""
workflow-glue parse_kit_metadata from_sheet \
--user_config ${sc_sample_sheet} \
--kit_config kit_config.csv \
--sample_ids sample_ids \
--output merged.csv
"""
}else{
"""
workflow-glue parse_kit_metadata from_cli \
--kit_config kit_config.csv \
--kit "$params.kit" \
--expected_cells $params.expected_cells \
--sample_ids $sample_ids \
--output merged.csv
"""
}
}
process prepare_report_data {
label "singlecell"
cpus 1
memory "1 GB"
input:
tuple val(meta),
path('adapter_stats/stats*.json'),
path('expression_stats/stats*.json'),
path('white_list.txt'),
path('gene_mean_expression.tsv'),
path('transcript_mean_expression.tsv'),
path('mitochondrial_expression.tsv'),
path(umaps),
path('bamstats/bam_stats*.tsv')
output:
// sample_id column added to survival.tsv and bm_stats.tsv no need for meta
path "survival.tsv", emit: survival
path "bam_stats.tsv", emit: bam_stats
path "${meta.alias}_umap", emit: umap_dir
script:
opt_umap = umaps.name != 'OPTIONAL_FILE'
String hist_dir = "histogram_stats/${meta.alias}"
"""
workflow-glue prepare_report_data \
"${meta.alias}" adapter_stats bamstats expression_stats white_list.txt survival.tsv bam_stats.tsv
umd=${meta.alias}_umap
mkdir \$umd
if [ "$opt_umap" = true ]; then
echo "Adding umap data to sample directory"
# Add data required for umap plotting into sample directory
mv *umap*.tsv \$umd
mv gene_mean_expression.tsv \$umd
mv transcript_mean_expression.tsv \$umd
mv mitochondrial_expression.tsv \$umd
else
touch "\$umd"/OPTIONAL_FILE
fi
"""
}
// workflow module
workflow pipeline {
take:
chunks
ref_genome_dir
umap_genes
main:
// throw an exception for deprecated conda users
if (workflow.profile.contains("conda")) {
throw new Exception(
"Sorry, this workflow is not compatible with --profile conda," +
"please use --profile standard (Docker) " +
"or --profile singularity.")
}
ref_genome_fasta = file("${params.ref_genome_dir}/fasta/genome.fa", checkIfExists: true)
ref_genome_idx = file("${params.ref_genome_dir}/fasta/genome.fa.fai", checkIfExists: true)
ref_genes_gtf = file("${params.ref_genome_dir}/genes/genes.gtf", checkIfExists: true)
software_versions = getVersions()
workflow_params = getParams()
bc_longlist_dir = file("${projectDir}/data", checkIfExists: true)
preprocess(
chunks.map{meta, fastq, stats -> [meta, fastq]},
bc_longlist_dir,
ref_genome_fasta,
ref_genome_idx,
ref_genes_gtf)
process_bams(
preprocess.out.bam_sort,
preprocess.out.read_tags,
preprocess.out.high_qual_bc_counts.groupTuple(),
ref_genes_gtf,
ref_genome_fasta,
ref_genome_idx)
prepare_report_data(
preprocess.out.adapter_summary.groupTuple()
.join(process_bams.out.expression_stats
.groupTuple()
.map{meta, chrs, stats -> [meta, stats]})
.join(process_bams.out.white_list)
.join(process_bams.out.gene_mean_expression)
.join(process_bams.out.transcript_mean_expression)
.join(process_bams.out.mitochondrial_expression)
.join(process_bams.out.umap_matrices)
.join(preprocess.out.bam_stats
.groupTuple()))
// Get the metadata and stats for the report
chunks
.groupTuple()
.multiMap{ meta, chunk, stats ->
meta: meta
stats: stats[0]
}.set { for_report }
metadata = for_report.meta.collect()
stats = for_report.stats.collect()
// note the cheeky little .collectFile() here to concatenate the
// read survival stats from different samples into a single file
makeReport(
metadata,
software_versions,
workflow_params,
stats,
prepare_report_data.out.survival
.collectFile(keepHeader:true),
prepare_report_data.out.umap_dir.collect(),
process_bams.out.plots,
umap_genes,
workflow.manifest.version,
prepare_report_data.out.bam_stats
.collectFile(keepHeader:true))
}
// entrypoint workflow
WorkflowMain.initialise(workflow, params, log)
workflow {
Pinguscript.ping_start(nextflow, workflow, params)
ref_genome_dir = file(params.ref_genome_dir, checkIfExists: true)
if (params.umap_plot_genes){
umap_genes = file(params.umap_plot_genes, checkIfExists: true)
}else{
umap_genes = file("${projectDir}/umap_plot_genes.csv", checkIfExists: true)
}
if (params.kit_config){
kit_configs_file = file(params.kit_config, checkIfExists: true)
}else{
kit_configs_file = file("${projectDir}/kit_configs.csv", checkIfExists: true)
}
if (params.fastq) {
samples = fastq_ingress([
"input":params.fastq,
"sample":params.sample,
"sample_sheet":params.sample_sheet,
"fastq_chunk": params.fastq_chunk,
"stats": true,
"per_read_stats": false])
} else {
samples = xam_ingress([
"input":params.bam,
"sample":params.sample,
"sample_sheet":params.sample_sheet,
"fastq_chunk": params.fastq_chunk,
"keep_unaligned": true,
"return_fastq": true,
"stats": true,
"per_read_stats": false])
}
if (!params.single_cell_sample_sheet) {
sc_sample_sheet = file("$projectDir/data/OPTIONAL_FILE")
} else {
// Read single_cell_sample_sheet
sc_sample_sheet = file(params.single_cell_sample_sheet, checkIfExists: true)
}
fastqingress_ids = samples.map {meta, file, stats -> meta.alias }.unique().collectFile(newLine: true)
// Get [sample_id, kit_meta]
kit_meta = parse_kit_metadata(fastqingress_ids, sc_sample_sheet, kit_configs_file)
.splitCsv(header:true)
.map {it -> [it['sample_id'], it]}
// Merge the kit metadata onto the sample metadata
sample_and_kit_meta = kit_meta
.cross(samples
// Put sample_id as first element for join
.map {meta, chunk, stats -> [meta.alias, meta, chunk, stats]})
// Extract the joined sample and kit info from the cross results
.map {kit, sample -> [ sample[1] + kit[1], sample[2], sample[3]]}
// we never need the chunk index for merging items so discard it
.map {meta, chunk, stats ->
def new_meta = meta.clone()
new_meta.remove('group_index')
[new_meta, chunk, stats]}
pipeline(
sample_and_kit_meta,
ref_genome_dir,
umap_genes)
}
workflow.onComplete {
Pinguscript.ping_complete(nextflow, workflow, params)
}
workflow.onError {
Pinguscript.ping_error(nextflow, workflow, params)
}