-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathppo_coacai_partial_mask.py
executable file
·475 lines (424 loc) · 22.1 KB
/
ppo_coacai_partial_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.distributions.categorical import Categorical
from torch.utils.tensorboard import SummaryWriter
import argparse
from distutils.util import strtobool
import numpy as np
import gym
import gym_microrts
from gym_microrts.envs.vec_env import MicroRTSVecEnv
from gym_microrts import microrts_ai
from gym.wrappers import TimeLimit, Monitor
from gym.spaces import Discrete, Box, MultiBinary, MultiDiscrete, Space
import time
import random
import os
from stable_baselines3.common.vec_env import VecEnvWrapper, VecVideoRecorder
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='PPO agent')
# Common arguments
parser.add_argument('--exp-name', type=str, default=os.path.basename(__file__).rstrip(".py"),
help='the name of this experiment')
parser.add_argument('--gym-id', type=str, default="MicrortsDefeatCoacAIShaped-v3",
help='the id of the gym environment')
parser.add_argument('--learning-rate', type=float, default=2.5e-4,
help='the learning rate of the optimizer')
parser.add_argument('--seed', type=int, default=1,
help='seed of the experiment')
parser.add_argument('--total-timesteps', type=int, default=100000000,
help='total timesteps of the experiments')
parser.add_argument('--torch-deterministic', type=lambda x:bool(strtobool(x)), default=True, nargs='?', const=True,
help='if toggled, `torch.backends.cudnn.deterministic=False`')
parser.add_argument('--cuda', type=lambda x:bool(strtobool(x)), default=True, nargs='?', const=True,
help='if toggled, cuda will not be enabled by default')
parser.add_argument('--prod-mode', type=lambda x:bool(strtobool(x)), default=False, nargs='?', const=True,
help='run the script in production mode and use wandb to log outputs')
parser.add_argument('--capture-video', type=lambda x:bool(strtobool(x)), default=False, nargs='?', const=True,
help='weather to capture videos of the agent performances (check out `videos` folder)')
parser.add_argument('--wandb-project-name', type=str, default="cleanRL",
help="the wandb's project name")
parser.add_argument('--wandb-entity', type=str, default=None,
help="the entity (team) of wandb's project")
# Algorithm specific arguments
parser.add_argument('--n-minibatch', type=int, default=4,
help='the number of mini batch')
parser.add_argument('--num-envs', type=int, default=24,
help='the number of parallel game environment')
parser.add_argument('--num-steps', type=int, default=512,
help='the number of steps per game environment')
parser.add_argument('--gamma', type=float, default=0.99,
help='the discount factor gamma')
parser.add_argument('--gae-lambda', type=float, default=0.95,
help='the lambda for the general advantage estimation')
parser.add_argument('--ent-coef', type=float, default=0.01,
help="coefficient of the entropy")
parser.add_argument('--vf-coef', type=float, default=0.5,
help="coefficient of the value function")
parser.add_argument('--max-grad-norm', type=float, default=0.5,
help='the maximum norm for the gradient clipping')
parser.add_argument('--clip-coef', type=float, default=0.1,
help="the surrogate clipping coefficient")
parser.add_argument('--update-epochs', type=int, default=4,
help="the K epochs to update the policy")
parser.add_argument('--kle-stop', type=lambda x:bool(strtobool(x)), default=False, nargs='?', const=True,
help='If toggled, the policy updates will be early stopped w.r.t target-kl')
parser.add_argument('--kle-rollback', type=lambda x:bool(strtobool(x)), default=False, nargs='?', const=True,
help='If toggled, the policy updates will roll back to previous policy if KL exceeds target-kl')
parser.add_argument('--target-kl', type=float, default=0.03,
help='the target-kl variable that is referred by --kl')
parser.add_argument('--gae', type=lambda x:bool(strtobool(x)), default=True, nargs='?', const=True,
help='Use GAE for advantage computation')
parser.add_argument('--norm-adv', type=lambda x:bool(strtobool(x)), default=True, nargs='?', const=True,
help="Toggles advantages normalization")
parser.add_argument('--anneal-lr', type=lambda x:bool(strtobool(x)), default=True, nargs='?', const=True,
help="Toggle learning rate annealing for policy and value networks")
parser.add_argument('--clip-vloss', type=lambda x:bool(strtobool(x)), default=True, nargs='?', const=True,
help='Toggles wheter or not to use a clipped loss for the value function, as per the paper.')
args = parser.parse_args()
if not args.seed:
args.seed = int(time.time())
args.batch_size = int(args.num_envs * args.num_steps)
args.minibatch_size = int(args.batch_size // args.n_minibatch)
class VecMonitor(VecEnvWrapper):
def __init__(self, venv):
VecEnvWrapper.__init__(self, venv)
self.eprets = None
self.eplens = None
self.epcount = 0
self.tstart = time.time()
def reset(self):
obs = self.venv.reset()
self.eprets = np.zeros(self.num_envs, 'f')
self.eplens = np.zeros(self.num_envs, 'i')
return obs
def step_wait(self):
obs, rews, dones, infos = self.venv.step_wait()
self.eprets += rews
self.eplens += 1
newinfos = list(infos[:])
for i in range(len(dones)):
if dones[i]:
info = infos[i].copy()
ret = self.eprets[i]
eplen = self.eplens[i]
epinfo = {'r': ret, 'l': eplen, 't': round(time.time() - self.tstart, 6)}
info['episode'] = epinfo
self.epcount += 1
self.eprets[i] = 0
self.eplens[i] = 0
newinfos[i] = info
return obs, rews, dones, newinfos
class VecPyTorch(VecEnvWrapper):
def __init__(self, venv, device):
super(VecPyTorch, self).__init__(venv)
self.device = device
def reset(self):
obs = self.venv.reset()
obs = torch.from_numpy(obs).float().to(self.device)
return obs
def step_async(self, actions):
actions = actions.cpu().numpy()
self.venv.step_async(actions)
def step_wait(self):
obs, reward, done, info = self.venv.step_wait()
obs = torch.from_numpy(obs).float().to(self.device)
reward = torch.from_numpy(reward).unsqueeze(dim=1).float()
return obs, reward, done, info
class MicroRTSStatsRecorder(VecEnvWrapper):
def __init__(self, env, gamma):
super().__init__(env)
self.gamma = gamma
def reset(self):
obs = self.venv.reset()
self.raw_rewards = [[] for _ in range(self.num_envs)]
return obs
def step_wait(self):
obs, rews, dones, infos = self.venv.step_wait()
for i in range(len(dones)):
self.raw_rewards[i] += [infos[i]["raw_rewards"]]
newinfos = list(infos[:])
for i in range(len(dones)):
if dones[i]:
info = infos[i].copy()
raw_rewards = np.array(self.raw_rewards[i]).sum(0)
raw_names = [str(rf) for rf in self.rfs]
info['microrts_stats'] = dict(zip(raw_names, raw_rewards))
self.raw_rewards[i] = []
newinfos[i] = info
return obs, rews, dones, newinfos
# TRY NOT TO MODIFY: setup the environment
experiment_name = f"{args.gym_id}__{args.exp_name}__{args.seed}__{int(time.time())}"
writer = SummaryWriter(f"runs/{experiment_name}")
writer.add_text('hyperparameters', "|param|value|\n|-|-|\n%s" % (
'\n'.join([f"|{key}|{value}|" for key, value in vars(args).items()])))
if args.prod_mode:
import wandb
run = wandb.init(
project=args.wandb_project_name, entity=args.wandb_entity,
# sync_tensorboard=True,
config=vars(args), name=experiment_name, monitor_gym=True, save_code=True)
wandb.tensorboard.patch(save=False)
writer = SummaryWriter(f"/tmp/{experiment_name}")
CHECKPOINT_FREQUENCY = 50
# TRY NOT TO MODIFY: seeding
device = torch.device('cuda' if torch.cuda.is_available() and args.cuda else 'cpu')
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.backends.cudnn.deterministic = args.torch_deterministic
envs = MicroRTSVecEnv(
num_envs=args.num_envs,
max_steps=2000,
render_theme=2,
ai2s=[microrts_ai.coacAI for _ in range(args.num_envs)],
map_path="maps/16x16/basesWorkers16x16.xml",
reward_weight=np.array([10.0, 1.0, 1.0, 0.2, 1.0, 4.0])
)
envs = MicroRTSStatsRecorder(envs, args.gamma)
envs = VecMonitor(envs)
envs = VecPyTorch(envs, device)
if args.capture_video:
envs = VecVideoRecorder(envs, f'videos/{experiment_name}',
record_video_trigger=lambda x: x % 1000000 == 0, video_length=2000)
assert isinstance(envs.action_space, MultiDiscrete), "only MultiDiscrete action space is supported"
# ALGO LOGIC: initialize agent here:
class CategoricalMasked(Categorical):
def __init__(self, probs=None, logits=None, validate_args=None, masks=[]):
self.masks = masks
if len(self.masks) == 0:
super(CategoricalMasked, self).__init__(probs, logits, validate_args)
else:
self.masks = masks.type(torch.BoolTensor).to(device)
logits = torch.where(self.masks, logits, torch.tensor(-1e+8).to(device))
super(CategoricalMasked, self).__init__(probs, logits, validate_args)
def entropy(self):
if len(self.masks) == 0:
return super(CategoricalMasked, self).entropy()
p_log_p = self.logits * self.probs
p_log_p = torch.where(self.masks, p_log_p, torch.tensor(0.).to(device))
return -p_log_p.sum(-1)
class Scale(nn.Module):
def __init__(self, scale):
super().__init__()
self.scale = scale
def forward(self, x):
return x * self.scale
def layer_init(layer, std=np.sqrt(2), bias_const=0.0):
torch.nn.init.orthogonal_(layer.weight, std)
torch.nn.init.constant_(layer.bias, bias_const)
return layer
class Agent(nn.Module):
def __init__(self, frames=4):
super(Agent, self).__init__()
self.network = nn.Sequential(
layer_init(nn.Conv2d(27, 16, kernel_size=3, stride=2)),
nn.ReLU(),
layer_init(nn.Conv2d(16, 32, kernel_size=2)),
nn.ReLU(),
nn.Flatten(),
layer_init(nn.Linear(32*6*6, 256)),
nn.ReLU(),)
self.actor = layer_init(nn.Linear(256, envs.action_space.nvec.sum()), std=0.01)
self.critic = layer_init(nn.Linear(256, 1), std=1)
def forward(self, x):
return self.network(x.permute((0, 3, 1, 2))) # "bhwc" -> "bchw"
def get_action(self, x, action=None, invalid_action_masks=None, envs=None):
logits = self.actor(self.forward(x))
split_logits = torch.split(logits, envs.action_space.nvec.tolist(), dim=1)
if action is None:
# 1. select source unit based on source unit mask
source_unit_mask = torch.Tensor(np.array(envs.vec_client.getUnitLocationMasks()).reshape(args.num_envs, -1))
multi_categoricals = [CategoricalMasked(logits=split_logits[0], masks=source_unit_mask)]
action_components = [multi_categoricals[0].sample()]
# 2. select action type and parameter section based on the
# source-unit mask of action type and parameters
# print(np.array(envs.vec_client.getUnitActionMasks(action_components[0].cpu().numpy())).reshape(args.num_envs, -1))
source_unit_action_mask = torch.Tensor(
np.array(envs.vec_client.getUnitActionMasks(action_components[0].cpu().numpy())).reshape(args.num_envs, -1))
# remove the mask on action parameters, which is a similar setup to pysc2
source_unit_action_mask[:,6:] = 1
split_suam = torch.split(source_unit_action_mask, envs.action_space.nvec.tolist()[1:], dim=1)
multi_categoricals = multi_categoricals + [CategoricalMasked(logits=logits, masks=iam) for (logits, iam) in zip(split_logits[1:], split_suam)]
invalid_action_masks = torch.cat((source_unit_mask, source_unit_action_mask), 1)
action_components += [categorical.sample() for categorical in multi_categoricals[1:]]
action = torch.stack(action_components)
else:
split_invalid_action_masks = torch.split(invalid_action_masks, envs.action_space.nvec.tolist(), dim=1)
multi_categoricals = [CategoricalMasked(logits=logits, masks=iam) for (logits, iam) in zip(split_logits, split_invalid_action_masks)]
logprob = torch.stack([categorical.log_prob(a) for a, categorical in zip(action, multi_categoricals)])
entropy = torch.stack([categorical.entropy() for categorical in multi_categoricals])
return action, logprob.sum(0), entropy.sum(0), invalid_action_masks
def get_value(self, x):
return self.critic(self.forward(x))
agent = Agent().to(device)
optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5)
if args.anneal_lr:
# https://github.com/openai/baselines/blob/ea25b9e8b234e6ee1bca43083f8f3cf974143998/baselines/ppo2/defaults.py#L20
lr = lambda f: f * args.learning_rate
# ALGO Logic: Storage for epoch data
obs = torch.zeros((args.num_steps, args.num_envs) + envs.observation_space.shape).to(device)
actions = torch.zeros((args.num_steps, args.num_envs) + envs.action_space.shape).to(device)
logprobs = torch.zeros((args.num_steps, args.num_envs)).to(device)
rewards = torch.zeros((args.num_steps, args.num_envs)).to(device)
dones = torch.zeros((args.num_steps, args.num_envs)).to(device)
values = torch.zeros((args.num_steps, args.num_envs)).to(device)
invalid_action_masks = torch.zeros((args.num_steps, args.num_envs) + (envs.action_space.nvec.sum(),)).to(device)
# TRY NOT TO MODIFY: start the game
global_step = 0
start_time = time.time()
# Note how `next_obs` and `next_done` are used; their usage is equivalent to
# https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail/blob/84a7582477fb0d5c82ad6d850fe476829dddd2e1/a2c_ppo_acktr/storage.py#L60
next_obs = envs.reset()
next_done = torch.zeros(args.num_envs).to(device)
num_updates = args.total_timesteps // args.batch_size
## CRASH AND RESUME LOGIC:
starting_update = 1
if args.prod_mode and wandb.run.resumed:
starting_update = run.summary.get('charts/update') + 1
global_step = starting_update * args.batch_size
api = wandb.Api()
run = api.run(f"{run.entity}/{run.project}/{run.id}")
model = run.file('agent.pt')
model.download(f"models/{experiment_name}/")
agent.load_state_dict(torch.load(f"models/{experiment_name}/agent.pt", map_location=device))
agent.eval()
print(f"resumed at update {starting_update}")
for update in range(starting_update, num_updates+1):
# Annealing the rate if instructed to do so.
if args.anneal_lr:
frac = 1.0 - (update - 1.0) / num_updates
lrnow = lr(frac)
optimizer.param_groups[0]['lr'] = lrnow
# TRY NOT TO MODIFY: prepare the execution of the game.
for step in range(0, args.num_steps):
envs.render()
global_step += 1 * args.num_envs
obs[step] = next_obs
dones[step] = next_done
# ALGO LOGIC: put action logic here
with torch.no_grad():
values[step] = agent.get_value(obs[step]).flatten()
action, logproba, _, invalid_action_masks[step] = agent.get_action(obs[step], envs=envs)
actions[step] = action.T
logprobs[step] = logproba
# TRY NOT TO MODIFY: execute the game and log data.
next_obs, rs, ds, infos = envs.step(action.T)
rewards[step], next_done = rs.view(-1), torch.Tensor(ds).to(device)
for info in infos:
if 'episode' in info.keys():
print(f"global_step={global_step}, episode_reward={info['episode']['r']}")
writer.add_scalar("charts/episode_reward", info['episode']['r'], global_step)
for key in info['microrts_stats']:
writer.add_scalar(f"charts/episode_reward/{key}", info['microrts_stats'][key], global_step)
break
# bootstrap reward if not done. reached the batch limit
with torch.no_grad():
last_value = agent.get_value(next_obs.to(device)).reshape(1, -1)
if args.gae:
advantages = torch.zeros_like(rewards).to(device)
lastgaelam = 0
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
nextvalues = last_value
else:
nextnonterminal = 1.0 - dones[t+1]
nextvalues = values[t+1]
delta = rewards[t] + args.gamma * nextvalues * nextnonterminal - values[t]
advantages[t] = lastgaelam = delta + args.gamma * args.gae_lambda * nextnonterminal * lastgaelam
returns = advantages + values
else:
returns = torch.zeros_like(rewards).to(device)
for t in reversed(range(args.num_steps)):
if t == args.num_steps - 1:
nextnonterminal = 1.0 - next_done
next_return = last_value
else:
nextnonterminal = 1.0 - dones[t+1]
next_return = returns[t+1]
returns[t] = rewards[t] + args.gamma * nextnonterminal * next_return
advantages = returns - values
# flatten the batch
b_obs = obs.reshape((-1,)+envs.observation_space.shape)
b_logprobs = logprobs.reshape(-1)
b_actions = actions.reshape((-1,)+envs.action_space.shape)
b_advantages = advantages.reshape(-1)
b_returns = returns.reshape(-1)
b_values = values.reshape(-1)
b_invalid_action_masks = invalid_action_masks.reshape((-1, invalid_action_masks.shape[-1]))
# Optimizaing the policy and value network
target_agent = Agent().to(device)
inds = np.arange(args.batch_size,)
for i_epoch_pi in range(args.update_epochs):
np.random.shuffle(inds)
target_agent.load_state_dict(agent.state_dict())
for start in range(0, args.batch_size, args.minibatch_size):
end = start + args.minibatch_size
minibatch_ind = inds[start:end]
mb_advantages = b_advantages[minibatch_ind]
if args.norm_adv:
mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-8)
_, newlogproba, entropy, _ = agent.get_action(
b_obs[minibatch_ind],
b_actions.long()[minibatch_ind].T,
b_invalid_action_masks[minibatch_ind],
envs)
ratio = (newlogproba - b_logprobs[minibatch_ind]).exp()
# Stats
approx_kl = (b_logprobs[minibatch_ind] - newlogproba).mean()
# Policy loss
pg_loss1 = -mb_advantages * ratio
pg_loss2 = -mb_advantages * torch.clamp(ratio, 1-args.clip_coef, 1+args.clip_coef)
pg_loss = torch.max(pg_loss1, pg_loss2).mean()
entropy_loss = entropy.mean()
# Value loss
new_values = agent.get_value(b_obs[minibatch_ind]).view(-1)
if args.clip_vloss:
v_loss_unclipped = ((new_values - b_returns[minibatch_ind]) ** 2)
v_clipped = b_values[minibatch_ind] + torch.clamp(new_values - b_values[minibatch_ind], -args.clip_coef, args.clip_coef)
v_loss_clipped = (v_clipped - b_returns[minibatch_ind])**2
v_loss_max = torch.max(v_loss_unclipped, v_loss_clipped)
v_loss = 0.5 * v_loss_max.mean()
else:
v_loss = 0.5 *((new_values - b_returns[minibatch_ind]) ** 2)
loss = pg_loss - args.ent_coef * entropy_loss + v_loss * args.vf_coef
optimizer.zero_grad()
loss.backward()
nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm)
optimizer.step()
if args.kle_stop:
if approx_kl > args.target_kl:
break
if args.kle_rollback:
if (b_logprobs[minibatch_ind] - agent.get_action(
b_obs[minibatch_ind],
b_actions.long()[minibatch_ind].T,
b_invalid_action_masks[minibatch_ind],
envs)[1]).mean() > args.target_kl:
agent.load_state_dict(target_agent.state_dict())
break
## CRASH AND RESUME LOGIC:
if args.prod_mode:
if not os.path.exists(f"models/{experiment_name}"):
os.makedirs(f"models/{experiment_name}")
torch.save(agent.state_dict(), f"{wandb.run.dir}/agent.pt")
wandb.save(f"agent.pt")
else:
if update % CHECKPOINT_FREQUENCY == 0:
torch.save(agent.state_dict(), f"{wandb.run.dir}/agent.pt")
# TRY NOT TO MODIFY: record rewards for plotting purposes
writer.add_scalar("charts/learning_rate", optimizer.param_groups[0]['lr'], global_step)
writer.add_scalar("charts/update", update, global_step)
writer.add_scalar("losses/value_loss", v_loss.item(), global_step)
writer.add_scalar("losses/policy_loss", pg_loss.item(), global_step)
writer.add_scalar("losses/entropy", entropy.mean().item(), global_step)
writer.add_scalar("losses/approx_kl", approx_kl.item(), global_step)
if args.kle_stop or args.kle_rollback:
writer.add_scalar("debug/pg_stop_iter", i_epoch_pi, global_step)
writer.add_scalar("charts/sps", int(global_step / (time.time() - start_time)), global_step)
print("SPS:", int(global_step / (time.time() - start_time)))
envs.close()
writer.close()