Skip to content

Latest commit

 

History

History
63 lines (37 loc) · 2.61 KB

README.md

File metadata and controls

63 lines (37 loc) · 2.61 KB

QPGCN: Graph Convolutional Network with a Quadratic Polynomial Filter for Overcoming Over-smoothings

This repository is the official implementation of QPGCN: Graph Convolutional Network with a Quadratic Polynomial Filter for Overcoming Over-smoothing.

Requirements

To install requirements:

pip install -r requirements.txt

Training

To train the model(s) in the paper, run this command:

python run.py --config ./config/QPGCN-cora.json
python run.py --config ./config/QPGCN-citeseer.json
python run.py --config ./config/QPGCN-pubmed.json
python run.py --config ./config/QPGCN-dblp.json

Results

Our model achieves the following performance on :

Model name Cora Citeseer Pubmed DBLP
QPGCN 83.31 $\pm$ 0.30% 71.22 $\pm$ 0.44% 79.22 $\pm$ 0.40% 85.92 $\pm$ 0.72%