-
Notifications
You must be signed in to change notification settings - Fork 0
/
Nadam.py
81 lines (70 loc) · 3.24 KB
/
Nadam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import math
import torch
from torch.optim.optimizer import Optimizer, required
class Nadam(Optimizer):
r"""Nadam algorithm.
$$
\left\{
\begin{aligned}
g_t \gets & \frac{ \partial L(\theta_t) }{ \partial \theta } \\
m_t \gets & \beta_1 m_{t-1} + (1 - \beta_1) g_t \\
v_t \gets & \beta_2 v_{t-1} + (1 - \beta_2) (g_t)^2 \\
\hat{m}_t \gets & \frac{m_t}{1 - (\beta_1)^t} \\
\hat{v}_t \gets & \frac{v_t}{1 - (\beta_2)^t} \\
\theta \gets & \theta - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \left(
\beta_1 \hat{m}_t + \frac{1 - \beta_1}{1 - (\beta_1)^t} g_t \right).
\end{aligned}
\right.
$$
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, amsgrad=False):
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad)
super(Nadam, self).__init__(params, defaults)
# State initialization
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p.data)
state['exp_avg_sq'] = torch.zeros_like(p.data)
def __setstate__(self, state):
super(Nadam, self).__setstate__(state)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Nadam does not support sparse gradients.')
amsgrad = group['amsgrad']
state = self.state[p]
beta1, beta2 = group['betas']
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
if group['weight_decay'] != 0:
grad.add_(group['weight_decay'], p.data)
state['exp_avg'].mul_(beta1).add_(1 - beta1, grad)
state['exp_avg_sq'].mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = (state['exp_avg_sq'].sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
exp_avg_hat = state['exp_avg'] / bias_correction1
exp_avg_hat = beta1 * exp_avg_hat + (1 - beta1) / bias_correction1 * grad
p.data.addcdiv_(-group['lr'], exp_avg_hat, denom)
return loss