-
Notifications
You must be signed in to change notification settings - Fork 129
/
Darknet.cpp
816 lines (641 loc) · 22.1 KB
/
Darknet.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/*******************************************************************************
*
* Author : walktree
* Email : walktree@gmail.com
*
* A Libtorch implementation of the YOLO v3 object detection algorithm, written with pure C++.
* It's fast, easy to be integrated to your production, and supports CPU and GPU computation. Enjoy ~
*
*******************************************************************************/
#include "Darknet.h"
#include <stdio.h>
#include <iostream>
#include <typeinfo>
// trim from start (in place)
static inline void ltrim(std::string &s) {
s.erase(s.begin(), std::find_if(s.begin(), s.end(), [](int ch) {
return !std::isspace(ch);
}));
}
// trim from end (in place)
static inline void rtrim(std::string &s) {
s.erase(std::find_if(s.rbegin(), s.rend(), [](int ch) {
return !std::isspace(ch);
}).base(), s.end());
}
// trim from both ends (in place)
static inline void trim(std::string &s) {
ltrim(s);
rtrim(s);
}
static inline int split(const string& str, std::vector<string>& ret_, string sep = ",")
{
if (str.empty())
{
return 0;
}
string tmp;
string::size_type pos_begin = str.find_first_not_of(sep);
string::size_type comma_pos = 0;
while (pos_begin != string::npos)
{
comma_pos = str.find(sep, pos_begin);
if (comma_pos != string::npos)
{
tmp = str.substr(pos_begin, comma_pos - pos_begin);
pos_begin = comma_pos + sep.length();
}
else
{
tmp = str.substr(pos_begin);
pos_begin = comma_pos;
}
if (!tmp.empty())
{
trim(tmp);
ret_.push_back(tmp);
tmp.clear();
}
}
return 0;
}
static inline int split(const string& str, std::vector<int>& ret_, string sep = ",")
{
std::vector<string> tmp;
auto rc = split(str, tmp, sep);
for(int i = 0; i < tmp.size(); i++)
{
ret_.push_back(std::stoi(tmp[i]));
}
return rc;
}
// returns the IoU of two bounding boxes
static inline torch::Tensor get_bbox_iou(torch::Tensor box1, torch::Tensor box2)
{
// Get the coordinates of bounding boxes
torch::Tensor b1_x1, b1_y1, b1_x2, b1_y2;
b1_x1 = box1.select(1, 0);
b1_y1 = box1.select(1, 1);
b1_x2 = box1.select(1, 2);
b1_y2 = box1.select(1, 3);
torch::Tensor b2_x1, b2_y1, b2_x2, b2_y2;
b2_x1 = box2.select(1, 0);
b2_y1 = box2.select(1, 1);
b2_x2 = box2.select(1, 2);
b2_y2 = box2.select(1, 3);
// et the corrdinates of the intersection rectangle
torch::Tensor inter_rect_x1 = torch::max(b1_x1, b2_x1);
torch::Tensor inter_rect_y1 = torch::max(b1_y1, b2_y1);
torch::Tensor inter_rect_x2 = torch::min(b1_x2, b2_x2);
torch::Tensor inter_rect_y2 = torch::min(b1_y2, b2_y2);
// Intersection area
torch::Tensor inter_area = torch::max(inter_rect_x2 - inter_rect_x1 + 1,torch::zeros(inter_rect_x2.sizes()))*torch::max(inter_rect_y2 - inter_rect_y1 + 1, torch::zeros(inter_rect_x2.sizes()));
// Union Area
torch::Tensor b1_area = (b1_x2 - b1_x1 + 1)*(b1_y2 - b1_y1 + 1);
torch::Tensor b2_area = (b2_x2 - b2_x1 + 1)*(b2_y2 - b2_y1 + 1);
torch::Tensor iou = inter_area / (b1_area + b2_area - inter_area);
return iou;
}
int Darknet::get_int_from_cfg(map<string, string> block, string key, int default_value)
{
if ( block.find(key) != block.end() )
{
return std::stoi(block.at(key));
}
return default_value;
}
string Darknet::get_string_from_cfg(map<string, string> block, string key, string default_value)
{
if ( block.find(key) != block.end() )
{
return block.at(key);
}
return default_value;
}
torch::nn::Conv2dOptions conv_options(int64_t in_planes, int64_t out_planes, int64_t kerner_size,
int64_t stride, int64_t padding, int64_t groups, bool with_bias=false){
torch::nn::Conv2dOptions conv_options = torch::nn::Conv2dOptions(in_planes, out_planes, kerner_size);
conv_options.stride(stride);
conv_options.padding(padding);
conv_options.groups(groups);
conv_options.bias(with_bias); //@ihmc3jn09hk Fix for PyTorch 1.6
return conv_options;
}
torch::nn::BatchNormOptions bn_options(int64_t features){
torch::nn::BatchNormOptions bn_options = torch::nn::BatchNormOptions(features);
bn_options.affine(true);
bn_options.track_running_stats(true); //@ihmc3jn09hk Fix for PyTorch 1.6
return bn_options;
}
struct EmptyLayer : torch::nn::Module
{
EmptyLayer(){
}
torch::Tensor forward(torch::Tensor x) {
return x;
}
};
struct UpsampleLayer : torch::nn::Module
{
int _stride;
UpsampleLayer(int stride){
_stride = stride;
}
torch::Tensor forward(torch::Tensor x) {
torch::IntArrayRef sizes = x.sizes();
int64_t w, h;
if (sizes.size() == 4)
{
w = sizes[2] * _stride;
h = sizes[3] * _stride;
x = torch::upsample_nearest2d(x, {w, h});
}
else if (sizes.size() == 3)
{
w = sizes[2] * _stride;
x = torch::upsample_nearest1d(x, {w});
}
return x;
}
};
struct MaxPoolLayer2D : torch::nn::Module
{
int _kernel_size;
int _stride;
MaxPoolLayer2D(int kernel_size, int stride){
_kernel_size = kernel_size;
_stride = stride;
}
torch::Tensor forward(torch::Tensor x) {
if (_stride != 1)
{
x = torch::max_pool2d(x, {_kernel_size, _kernel_size}, {_stride, _stride});
}
else
{
int pad = _kernel_size - 1;
torch::Tensor padded_x = torch::replication_pad2d(x, {0, pad, 0, pad});
x = torch::max_pool2d(padded_x, {_kernel_size, _kernel_size}, {_stride, _stride});
}
return x;
}
};
struct DetectionLayer : torch::nn::Module
{
vector<float> _anchors;
DetectionLayer(vector<float> anchors)
{
_anchors = anchors;
}
torch::Tensor forward(torch::Tensor prediction, int inp_dim, int num_classes, torch::Device device)
{
return predict_transform(prediction, inp_dim, _anchors, num_classes, device);
}
torch::Tensor predict_transform(torch::Tensor prediction, int inp_dim, vector<float> anchors, int num_classes, torch::Device device)
{
int batch_size = prediction.size(0);
int stride = floor(inp_dim / prediction.size(2));
int grid_size = floor(inp_dim / stride);
int bbox_attrs = 5 + num_classes;
int num_anchors = anchors.size()/2;
for (size_t i = 0; i < anchors.size(); i++)
{
anchors[i] = anchors[i]/stride;
}
torch::Tensor result = prediction.view({batch_size, bbox_attrs * num_anchors, grid_size * grid_size});
result = result.transpose(1,2).contiguous();
result = result.view({batch_size, grid_size*grid_size*num_anchors, bbox_attrs});
result.select(2, 0).sigmoid_();
result.select(2, 1).sigmoid_();
result.select(2, 4).sigmoid_();
auto grid_len = torch::arange(grid_size);
std::vector<torch::Tensor> args = torch::meshgrid({grid_len, grid_len});
torch::Tensor x_offset = args[1].contiguous().view({-1, 1});
torch::Tensor y_offset = args[0].contiguous().view({-1, 1});
// std::cout << "x_offset:" << x_offset << endl;
// std::cout << "y_offset:" << y_offset << endl;
x_offset = x_offset.to(device);
y_offset = y_offset.to(device);
auto x_y_offset = torch::cat({x_offset, y_offset}, 1).repeat({1, num_anchors}).view({-1, 2}).unsqueeze(0);
result.slice(2, 0, 2).add_(x_y_offset);
torch::Tensor anchors_tensor = torch::from_blob(anchors.data(), {num_anchors, 2});
//if (device != nullptr)
anchors_tensor = anchors_tensor.to(device);
anchors_tensor = anchors_tensor.repeat({grid_size*grid_size, 1}).unsqueeze(0);
result.slice(2, 2, 4).exp_().mul_(anchors_tensor);
result.slice(2, 5, 5 + num_classes).sigmoid_();
result.slice(2, 0, 4).mul_(stride);
return result;
}
};
//---------------------------------------------------------------------------
// Darknet
//---------------------------------------------------------------------------
Darknet::Darknet(const char *cfg_file, torch::Device *device) {
load_cfg(cfg_file);
_device = device;
create_modules();
}
void Darknet::load_cfg(const char *cfg_file)
{
ifstream fs(cfg_file);
string line;
if(!fs)
{
std::cout << "Fail to load cfg file: " << cfg_file << endl;
std::cout << strerror(errno) << endl;
exit(-1);
}
while (getline (fs, line))
{
trim(line);
if (line.empty())
{
continue;
}
if ( line.substr (0,1) == "[")
{
map<string, string> block;
string key = line.substr(1, line.length() -2);
block["type"] = key;
blocks.push_back(block);
}
else
{
map<string, string> *block = &blocks[blocks.size() -1];
vector<string> op_info;
split(line, op_info, "=");
if (op_info.size() == 2)
{
string p_key = op_info[0];
string p_value = op_info[1];
block->operator[](p_key) = p_value;
}
}
}
fs.close();
}
void Darknet::create_modules()
{
int prev_filters = 3;
std::vector<int> output_filters;
int index = 0;
int filters = 0;
for (size_t i = 0, len = blocks.size(); i < len; i++)
{
map<string, string> block = blocks[i];
string layer_type = block["type"];
// std::cout << index << "--" << layer_type << endl;
torch::nn::Sequential module;
if (layer_type == "net")
continue;
if (layer_type == "convolutional")
{
string activation = get_string_from_cfg(block, "activation", "");
int batch_normalize = get_int_from_cfg(block, "batch_normalize", 0);
filters = get_int_from_cfg(block, "filters", 0);
int padding = get_int_from_cfg(block, "pad", 0);
int kernel_size = get_int_from_cfg(block, "size", 0);
int stride = get_int_from_cfg(block, "stride", 1);
int pad = padding > 0? (kernel_size -1)/2: 0;
bool with_bias = batch_normalize > 0? false : true;
torch::nn::Conv2d conv = torch::nn::Conv2d(conv_options(prev_filters, filters, kernel_size, stride, pad, 1, with_bias));
module->push_back(conv);
if (batch_normalize > 0)
{
torch::nn::BatchNorm2dImpl bn = torch::nn::BatchNorm2dImpl(bn_options(filters)); //@ihmc3jn09hk Fix for PyTorch 1.6
module->push_back(bn);
}
if (activation == "leaky")
{
module->push_back(torch::nn::Functional(torch::leaky_relu, /*slope=*/0.1));
}
}
else if (layer_type == "upsample")
{
int stride = get_int_from_cfg(block, "stride", 1);
UpsampleLayer uplayer(stride);
module->push_back(uplayer);
}
else if (layer_type == "maxpool")
{
int stride = get_int_from_cfg(block, "stride", 1);
int size = get_int_from_cfg(block, "size", 1);
MaxPoolLayer2D poolLayer(size, stride);
module->push_back(poolLayer);
}
else if (layer_type == "shortcut")
{
// skip connection
int from = get_int_from_cfg(block, "from", 0);
block["from"] = std::to_string(from);
blocks[i] = block;
// placeholder
EmptyLayer layer;
module->push_back(layer);
}
else if (layer_type == "route")
{
// L 85: -1, 61
string layers_info = get_string_from_cfg(block, "layers", "");
std::vector<string> layers;
split(layers_info, layers, ",");
std::string::size_type sz;
signed int start = std::stoi(layers[0], &sz);
signed int end = 0;
if (layers.size() > 1)
{
end = std::stoi(layers[1], &sz);
}
if (start > 0) start = start - index;
if (end > 0) end = end - index;
block["start"] = std::to_string(start);
block["end"] = std::to_string(end);
blocks[i] = block;
// placeholder
EmptyLayer layer;
module->push_back(layer);
if (end < 0)
{
filters = output_filters[index + start] + output_filters[index + end];
}
else
{
filters = output_filters[index + start];
}
}
else if (layer_type == "yolo")
{
string mask_info = get_string_from_cfg(block, "mask", "");
std::vector<int> masks;
split(mask_info, masks, ",");
string anchor_info = get_string_from_cfg(block, "anchors", "");
std::vector<int> anchors;
split(anchor_info, anchors, ",");
std::vector<float> anchor_points;
int pos;
for (size_t i = 0; i< masks.size(); i++)
{
pos = masks[i];
anchor_points.push_back(anchors[pos * 2]);
anchor_points.push_back(anchors[pos * 2+1]);
}
DetectionLayer layer(anchor_points);
module->push_back(layer);
}
else
{
cout << "unsupported operator:" << layer_type << endl;
}
prev_filters = filters;
output_filters.push_back(filters);
module_list.push_back(module);
char *module_key = new char[strlen("layer_") + sizeof(index) + 1];
sprintf(module_key, "%s%d", "layer_", index);
register_module(module_key, module);
index += 1;
}
}
map<string, string>* Darknet::get_net_info()
{
if (blocks.size() > 0)
{
return &blocks[0];
}
return nullptr;
}
void Darknet::load_weights(const char *weight_file)
{
ifstream fs(weight_file, ios::binary);
if (!fs) {
std::cout << "Fail to load weight file: " << weight_file << endl;
std::cout << strerror(errno) << endl;
exit(-1);
}
// header info: 5 * int32_t
int32_t header_size = sizeof(int32_t)*5;
int64_t index_weight = 0;
fs.seekg (0, fs.end);
int64_t length = fs.tellg();
// skip header
length = length - header_size;
fs.seekg (header_size, fs.beg);
float *weights_src = (float *)malloc(length);
fs.read(reinterpret_cast<char*>(weights_src), length);
fs.close();
/*at::TensorOptions options= torch::TensorOptions()
.dtype(torch::kFloat32)
.is_variable(true);*/ //@ihmc3jn09hk Remove unused code
at::Tensor weights = torch::from_blob(weights_src, {length/4});
for (size_t i = 0; i < module_list.size(); i++)
{
map<string, string> module_info = blocks[i + 1];
string module_type = module_info["type"];
// only conv layer need to load weight
if (module_type != "convolutional") continue;
torch::nn::Sequential seq_module = module_list[i];
auto conv_module = seq_module.ptr()->ptr(0);
torch::nn::Conv2dImpl *conv_imp = dynamic_cast<torch::nn::Conv2dImpl *>(conv_module.get());
int batch_normalize = get_int_from_cfg(module_info, "batch_normalize", 0);
if (batch_normalize > 0)
{
// second module
auto bn_module = seq_module.ptr()->ptr(1);
torch::nn::BatchNorm2dImpl *bn_imp = dynamic_cast<torch::nn::BatchNorm2dImpl *>(bn_module.get()); //@ihmc3jn09hk Fix for PyTorch 1.6
int num_bn_biases = bn_imp->bias.numel();
at::Tensor bn_bias = weights.slice(0, index_weight, index_weight + num_bn_biases);
index_weight += num_bn_biases;
at::Tensor bn_weights = weights.slice(0, index_weight, index_weight + num_bn_biases);
index_weight += num_bn_biases;
at::Tensor bn_running_mean = weights.slice(0, index_weight, index_weight + num_bn_biases);
index_weight += num_bn_biases;
at::Tensor bn_running_var = weights.slice(0, index_weight, index_weight + num_bn_biases);
index_weight += num_bn_biases;
bn_bias = bn_bias.view_as(bn_imp->bias);
bn_weights = bn_weights.view_as(bn_imp->weight);
bn_running_mean = bn_running_mean.view_as(bn_imp->running_mean);
bn_running_var = bn_running_var.view_as(bn_imp->running_var);
bn_imp->bias.set_data(bn_bias);
bn_imp->weight.set_data(bn_weights);
bn_imp->running_mean.set_data(bn_running_mean);
bn_imp->running_var.set_data(bn_running_var);
}
else
{
int num_conv_biases = conv_imp->bias.numel();
at::Tensor conv_bias = weights.slice(0, index_weight, index_weight + num_conv_biases);
index_weight += num_conv_biases;
conv_bias = conv_bias.view_as(conv_imp->bias);
conv_imp->bias.set_data(conv_bias);
}
int num_weights = conv_imp->weight.numel();
at::Tensor conv_weights = weights.slice(0, index_weight, index_weight + num_weights);
index_weight += num_weights;
conv_weights = conv_weights.view_as(conv_imp->weight);
conv_imp->weight.set_data(conv_weights);
}
}
torch::Tensor Darknet::forward(torch::Tensor x)
{
size_t module_count = module_list.size();
std::vector<torch::Tensor> outputs(module_count);
torch::Tensor result;
int write = 0;
for (size_t i = 0; i < module_count; i++)
{
map<string, string> block = blocks[i+1];
string layer_type = block["type"];
if (layer_type == "net")
continue;
if (layer_type == "convolutional" || layer_type == "upsample" || layer_type == "maxpool")
{
torch::nn::SequentialImpl *seq_imp = dynamic_cast<torch::nn::SequentialImpl *>(module_list[i].ptr().get());
x = seq_imp->forward(x);
outputs[i] = x;
}
else if (layer_type == "route")
{
int start = std::stoi(block["start"]);
int end = std::stoi(block["end"]);
if (start > 0) start = start - i;
if (end == 0)
{
x = outputs[i + start];
}
else
{
if (end > 0) end = end - i;
torch::Tensor map_1 = outputs[i + start];
torch::Tensor map_2 = outputs[i + end];
x = torch::cat({map_1, map_2}, 1);
}
outputs[i] = x;
}
else if (layer_type == "shortcut")
{
int from = std::stoi(block["from"]);
x = outputs[i-1] + outputs[i+from];
outputs[i] = x;
}
else if (layer_type == "yolo")
{
torch::nn::SequentialImpl *seq_imp = dynamic_cast<torch::nn::SequentialImpl *>(module_list[i].ptr().get());
map<string, string> net_info = blocks[0];
int inp_dim = get_int_from_cfg(net_info, "height", 0);
int num_classes = get_int_from_cfg(block, "classes", 0);
x = seq_imp->forward(x, inp_dim, num_classes, *_device);
if (write == 0)
{
result = x;
write = 1;
}
else
{
result = torch::cat({result,x}, 1);
}
outputs[i] = outputs[i-1];
}
}
return result;
}
torch::Tensor Darknet::write_results(torch::Tensor prediction, int num_classes, float confidence, float nms_conf)
{
// get result which object confidence > threshold
auto conf_mask = (prediction.select(2,4) > confidence).to(torch::kFloat32).unsqueeze(2);
prediction.mul_(conf_mask);
auto ind_nz = torch::nonzero(prediction.select(2, 4)).transpose(0, 1).contiguous();
if (ind_nz.size(0) == 0)
{
return torch::zeros({0});
}
torch::Tensor box_a = torch::ones(prediction.sizes(), prediction.options());
// top left x = centerX - w/2
box_a.select(2, 0) = prediction.select(2, 0) - prediction.select(2, 2).div(2);
box_a.select(2, 1) = prediction.select(2, 1) - prediction.select(2, 3).div(2);
box_a.select(2, 2) = prediction.select(2, 0) + prediction.select(2, 2).div(2);
box_a.select(2, 3) = prediction.select(2, 1) + prediction.select(2, 3).div(2);
prediction.slice(2, 0, 4) = box_a.slice(2, 0, 4);
int batch_size = prediction.size(0);
int item_attr_size = 5;
torch::Tensor output = torch::ones({1, prediction.size(2) + 1});
bool write = false;
int num = 0;
for (int i = 0; i < batch_size; i++)
{
auto image_prediction = prediction[i];
// get the max classes score at each result
std::tuple<torch::Tensor, torch::Tensor> max_classes = torch::max(image_prediction.slice(1, item_attr_size, item_attr_size + num_classes), 1);
// class score
auto max_conf = std::get<0>(max_classes);
// index
auto max_conf_score = std::get<1>(max_classes);
max_conf = max_conf.to(torch::kFloat32).unsqueeze(1);
max_conf_score = max_conf_score.to(torch::kFloat32).unsqueeze(1);
// shape: n * 7, left x, left y, right x, right y, object confidence, class_score, class_id
image_prediction = torch::cat({image_prediction.slice(1, 0, 5), max_conf, max_conf_score}, 1);
// remove item which object confidence == 0
auto non_zero_index = torch::nonzero(image_prediction.select(1,4));
auto image_prediction_data = image_prediction.index_select(0, non_zero_index.squeeze()).view({-1, 7});
// get unique classes
std::vector<torch::Tensor> img_classes;
for (int m = 0, len = image_prediction_data.size(0); m < len; m++)
{
bool found = false;
for (size_t n = 0; n < img_classes.size(); n++)
{
auto ret = (image_prediction_data[m][6] == img_classes[n]);
if (torch::nonzero(ret).size(0) > 0)
{
found = true;
break;
}
}
if (!found) img_classes.push_back(image_prediction_data[m][6]);
}
for (size_t k = 0; k < img_classes.size(); k++)
{
auto cls = img_classes[k];
auto cls_mask = image_prediction_data * (image_prediction_data.select(1, 6) == cls).to(torch::kFloat32).unsqueeze(1);
auto class_mask_index = torch::nonzero(cls_mask.select(1, 5)).squeeze();
auto image_pred_class = image_prediction_data.index_select(0, class_mask_index).view({-1,7});
// ascend by confidence
// seems that inverse method not work
std::tuple<torch::Tensor,torch::Tensor> sort_ret = torch::sort(image_pred_class.select(1,4));
auto conf_sort_index = std::get<1>(sort_ret);
// seems that there is something wrong with inverse method
// conf_sort_index = conf_sort_index.inverse();
image_pred_class = image_pred_class.index_select(0, conf_sort_index.squeeze()).cpu();
for(int w = 0; w < image_pred_class.size(0)-1; w++)
{
int mi = image_pred_class.size(0) - 1 - w;
if (mi <= 0)
{
break;
}
auto ious = get_bbox_iou(image_pred_class[mi].unsqueeze(0), image_pred_class.slice(0, 0, mi));
auto iou_mask = (ious < nms_conf).to(torch::kFloat32).unsqueeze(1);
image_pred_class.slice(0, 0, mi) = image_pred_class.slice(0, 0, mi) * iou_mask;
// remove from list
auto non_zero_index = torch::nonzero(image_pred_class.select(1,4)).squeeze();
image_pred_class = image_pred_class.index_select(0, non_zero_index).view({-1,7});
}
torch::Tensor batch_index = torch::ones({image_pred_class.size(0), 1}).fill_(i);
if (!write)
{
output = torch::cat({batch_index, image_pred_class}, 1);
write = true;
}
else
{
auto out = torch::cat({batch_index, image_pred_class}, 1);
output = torch::cat({output,out}, 0);
}
num += 1;
}
}
if (num == 0)
{
return torch::zeros({0});
}
return output;
}