-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy patheval_translate.py
executable file
·112 lines (99 loc) · 4.44 KB
/
eval_translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/env python
import argparse
import random
import os
import sys
import numpy
from numpy.linalg import norm
from read_write import read_word_vectors
from read_write import gzopen
EPSILON = 1e-6
def euclidean(vec1, vec2):
diff = vec1 - vec2
return math.sqrt(diff.dot(diff))
def cosine_sim(vec1, vec2):
vec1 += EPSILON * numpy.ones(len(vec1))
vec2 += EPSILON * numpy.ones(len(vec1))
return vec1.dot(vec2)/(norm(vec1)*norm(vec2))
def get_word_translation_gold_filename():
return 'dictionary'
def get_relevant_word_types(eval_data_filename):
relevant_word_types = set()
relevant_word_pairs = set()
with open(eval_data_filename) as eval_data_file:
for line in eval_data_file:
splits = line.strip().lower().split(' ||| ')
assert len(splits) == 2
relevant_word_types |= set(splits)
relevant_word_pairs.add( (splits[0], splits[1],) )
return relevant_word_types, relevant_word_pairs
def get_relevant_embeddings_filename(relevant_word_types, embeddings_filename):
# We only need embeddings for a subset of word types. Copy the relevant embeddings in a new plain file.
if not os.path.exists('temp'): os.mkdir('temp')
relevant_embeddings_filename = os.path.join(os.path.dirname(__file__), 'temp', str(random.randint(100000, 999999)))
with gzopen(embeddings_filename) as all_embeddings_file:
with open(relevant_embeddings_filename, mode='w') as relevant_embeddings_file:
for line in all_embeddings_file:
if line.split(' ')[0] not in relevant_word_types:
continue
relevant_embeddings_file.write(line)
return relevant_embeddings_filename
def compute_coverage(dictionary_file, word_vecs):
not_found, total_size = (0, 0)
for line in open(dictionary_file):
splits = line.strip().lower().split(' ||| ')
assert len(splits) == 2
word1, word2 = splits
total_size += 1
if word1 not in word_vecs or word2 not in word_vecs:
#print 'not found:', line
not_found += 1
assert total_size > 0
#import IPython as ipy; ipy.embed()
return 1.0 - (not_found * 1.0 / total_size)
def compute_precision_at_k(relevant_word_pairs, word_vecs, precision_at_k):
assert precision_at_k >= 1
total, correct = 0.0, 0.0
# for each pair in the evaluation dictionary
for gold_pair in relevant_word_pairs:
if gold_pair[0] not in word_vecs or gold_pair[1] not in word_vecs:
continue
gold_src, gold_tgt = gold_pair
# compute cosine similarity
gold_similarity = cosine_sim(word_vecs[gold_src], word_vecs[gold_tgt])
# then count the number of tgt words which are more similar than the correct translation.
count_of_more_similar_tgts = 0
for candidate_pair in relevant_word_pairs:
if candidate_pair[0] not in word_vecs or candidate_pair[1] not in word_vecs: continue
candidate_tgt = candidate_pair[1]
if candidate_tgt == gold_tgt: continue
similarity = cosine_sim(word_vecs[gold_src], word_vecs[candidate_tgt])
if similarity > gold_similarity: count_of_more_similar_tgts += 1
# if the number of more similar tgt words is > precision_at_k - 1, there's a problem
total += 1
if count_of_more_similar_tgts < precision_at_k: correct += 1
if total == 0: return 0.0
assert total > 0
score = correct / total
return score
def evaluate(eval_data_dir, embeddings_filename):
eval_data_filename = '{}/{}'.format(eval_data_dir, get_word_translation_gold_filename())
relevant_word_types, relevant_word_pairs = get_relevant_word_types(eval_data_filename)
relevant_embeddings_filename = get_relevant_embeddings_filename(relevant_word_types, embeddings_filename)
word_vecs = read_word_vectors(relevant_embeddings_filename)
coverage = compute_coverage(eval_data_filename, word_vecs)
score = compute_precision_at_k(relevant_word_pairs, word_vecs, 1)
os.remove(relevant_embeddings_filename)
return (score, coverage,)
def main(argv):
# parse/validate arguments
argparser = argparse.ArgumentParser()
argparser.add_argument("-eval-data", help="Path to a directory which contains all data files needed to setup the evaluation script.")
argparser.add_argument("-embeddings-file", help="Path to the embeddings file (lowercased, UTF8-encoded, space-delimited, optional: suffix .gz indicate the file is gzip compressed.)")
args = argparser.parse_args()
# evaluate
score, coverage = evaluate(args.eval_data, args.embeddings_file)
# report
print 'score={}, coverage={}'.format(score, coverage)
if __name__ == '__main__':
main(sys.argv)