forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcleanup_dataset.py
115 lines (94 loc) · 4.14 KB
/
cleanup_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import ftfy
import json
from langdetect import detect
import numpy as np
import time
import os
import sys
from tokenizer import Tokenizer
MIN_DOCUMENT_LENGHT = 128
def print_progress(prefix, start_time, num_docs, num_fixed_text,
num_non_english_docs, chars_non_english_docs,
num_small_docs, chars_small_docs):
string = prefix + ' | '
string += 'elapsed time: {:.2f} | '.format(time.time() - start_time)
string += 'documents: {} | '.format(num_docs)
string += 'fixed text: {} | '.format(num_fixed_text)
string += 'non-english: {} | '.format(num_non_english_docs)
string += 'non-english chars: {} | '.format(chars_non_english_docs)
string += 'small docs: {} | '.format(num_small_docs)
string += 'small docs chars: {}'.format(chars_small_docs)
print(string, flush=True)
def filter_corpus(filename, out_filename, print_interval=10000):
print(' > filtering {}'.format(filename))
tokenizer = Tokenizer(cache_dir='./cache')
num_docs = 0
num_written_docs = 0
num_small_docs = 0
num_fixed_text = 0
num_non_english_docs = 0
chars_non_english_docs = 0
chars_small_docs = 0
start_time = time.time()
with open(out_filename, 'wb') as f:
with open(filename, 'r') as fin:
for line in fin:
try:
num_docs += 1
myjson = json.loads(line)
# Fix text
text = ftfy.fix_text(myjson['text'])
if text != myjson['text']:
num_fixed_text += 1
myjson['text'] = text
# Detect language.
if detect(text) != 'en':
print('[non-english text]', myjson)
num_non_english_docs += 1
chars_non_english_docs += len(text)
continue
# On average each token is 5 characters so 8 is an
# upper bound.
if len(text) < (8 * MIN_DOCUMENT_LENGHT):
tokens = tokenizer.tokenize_document(text)
if len(tokens) < MIN_DOCUMENT_LENGHT:
print('[small document, skipping]:', myjson)
num_small_docs += 1
chars_small_docs += len(text)
continue
myjson = json.dumps(myjson, ensure_ascii=False)
f.write(myjson.encode('utf-8'))
f.write('\n'.encode('utf-8'))
num_written_docs += 1
if num_docs % print_interval == 0:
print_progress('[PROGRESS]', start_time, num_docs,
num_fixed_text, num_non_english_docs,
chars_non_english_docs,
num_small_docs, chars_small_docs)
except Exception as e:
print(' skipping ', line, e)
print_progress('[FINAL]', start_time, num_docs,
num_fixed_text, num_non_english_docs,
chars_non_english_docs,
num_small_docs, chars_small_docs)
if __name__ == '__main__':
print('building gpt2 dataset ...')
input_filename = sys.argv[1]
output_filename = sys.argv[2]
print('will be reading {}'.format(input_filename))
print('and will write the results to {}'.format(output_filename))
filter_corpus(input_filename, output_filename)