-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
49 lines (38 loc) · 1.68 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import argparse
import os
import lmdb
import numpy as np
import torchvision
from PIL import Image
from tqdm import tqdm
def main(input_root, out_root):
for mode_name in ['train', 'val']:
img_dir = os.path.join(input_root, mode_name)
dataset = torchvision.datasets.ImageFolder(img_dir)
print(f'[info] mode: {mode_name} \t class~idx: {dataset.class_to_idx}')
for kind_name in ['cat', 'dog', 'wild']:
out_dir = os.path.join(out_root, f'{kind_name}', mode_name+'.lmdb')
os.makedirs(out_dir, exist_ok=True)
with lmdb.open(out_dir, map_size=10*1024**2) as env:
count = prepare(env, dataset, kind_name)
print(f'[info] count: {count}, save {kind_name}-{mode_name} in {out_dir}')
print('-------------------------------------------------')
def prepare(env, dataset, kind_name):
count = 0
for img_path, label in tqdm(dataset.imgs):
if dataset.class_to_idx[kind_name] != label:
continue
img = Image.open(img_path)
img = np.array(img.getdata(), dtype=np.uint8).reshape(img.size[1], img.size[0], 3)
with env.begin(write=True) as txn:
txn.put(str(count).encode(), img)
count += 1
return count
if __name__ == '__main__':
parser = argparse.ArgumentParser('create afhq lmdb')
parser.add_argument('--input_root', type=str, default="afhq",
help='dataset dir')
parser.add_argument('--out_root', type=str, default="afhq_lmdb",
help='dir to save lmdb dataset')
args = parser.parse_args()
main(args.input_root, args.out_root)