-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
50 lines (46 loc) · 2.11 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#! /usr/bin/env python3
import tensorflow as tf
def MLP(n_layers: int, activation: str, use_softmax=False):
layers = [tf.keras.layers.Flatten()]
for i in range(n_layers - 1):
layers.append(tf.keras.layers.Dense(300, activation=activation))
# layers += [
# tf.keras.layers.Dense(300, activation=activation),
# tf.keras.layers.BatchNormalization()
# ]
if use_softmax:
layers.append(tf.keras.layers.Dense(2, activation='softmax'))
else:
layers.append(tf.keras.layers.Dense(1, activation=None))
return tf.keras.models.Sequential(layers)
def CNN(use_softmax=False):
layers = [
tf.keras.layers.Conv2D(96, 3, padding='same', activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(96, 3, padding='same', activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(96, 3, strides=2, padding='same',
activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(192, 3, padding='same', activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(192, 3, padding='same', activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(192, 3, strides=2, padding='same',
activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(192, 3, padding='same', activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(192, 1, activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Conv2D(10, 1, activation='relu'),
# tf.keras.layers.BatchNormalization(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1000, activation='relu'),
tf.keras.layers.Dense(1000, activation='relu')
]
if use_softmax:
layers.append(tf.keras.layers.Dense(2, activation='softmax'))
else:
layers.append(tf.keras.layers.Dense(1))
return tf.keras.models.Sequential(layers)