forked from wangcy6/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path118.杨辉三角.cpp
68 lines (59 loc) · 1.36 KB
/
118.杨辉三角.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
* @lc app=leetcode.cn id=118 lang=cpp
*
* [118] 杨辉三角
*
* https://leetcode-cn.com/problems/pascals-triangle/description/
*
* algorithms
* Easy (64.98%)
* Likes: 215
* Dislikes: 0
* Total Accepted: 51.4K
* Total Submissions: 79.1K
* Testcase Example: '5'
*
* 给定一个非负整数 numRows,生成杨辉三角的前 numRows 行。
*
*
*
* 在杨辉三角中,每个数是它左上方和右上方的数的和。
*
* 示例:
*
* 输入: 5
* 输出:
* [
* [1],
* [1,1],
* [1,2,1],
* [1,3,3,1],
* [1,4,6,4,1]
* ]
* https://leetcode.com/problems/pascals-triangle/discuss/38302/Maybe-is-the-shortest-code-in-c%2B%2B
*/
// @lc code=start
class Solution {
public:
vector<vector<int>> generate(int numRows) {
vector<vector<int>> res(numRows,vector(numRows,0));//n*n
if( numRows <= 0)
{
return res;
}
for (int i = 0; i < numRows; i++)
{
// 每一行开始和结束都是1
res[i].resize(i+1);
res[i][0] =res[i][i] =1;
//从第三行开始,第二列开始。
//从上一行最大数结束
for( int j =1; i >=2 && j<i;j++)
{
res[i][j]= res[i-1][j]+res[i-1][j-1];
}
}
return res;
}
};
// @lc code=end