-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSoGMF_BK.py
278 lines (230 loc) · 12.5 KB
/
SoGMF_BK.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#coding:utf-8
#按老师最新提的思路改进,社交关系为双向,用户物品与社交关系比为1:2
'''
Created on Aug 9, 2016
Keras Implementation of Generalized Matrix Factorization (GMF) recommender model in:
He Xiangnan et al. Neural Collaborative Filtering. In WWW 2017.
@author: Xiangnan He (xiangnanhe@gmail.com)
'''
#coding:utf-8
#按老师最新提的思路改进
'''
Created on Aug 9, 2016
Keras Implementation of Generalized Matrix Factorization (GMF) recommender model in:
He Xiangnan et al. Neural Collaborative Filtering. In WWW 2017.
@author: Xiangnan He (xiangnanhe@gmail.com)
'''
import numpy as np
import tensorflow as tf
import keras
import random
from keras import backend as K
from keras import initializations
from keras.models import Sequential, Model, load_model, save_model
from keras.layers.core import Dense, Lambda, Activation
from keras.layers import Embedding, Input, Dense, merge, Reshape, Merge, Flatten
from keras.optimizers import Adagrad, Adam, SGD, RMSprop
from keras.regularizers import l2
from BXDataset import Dataset
from BXevaluate import evaluate_model
from time import time
import multiprocessing as mp
import sys
import math
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="Run BXGMF1_3_1.")
parser.add_argument('--path', nargs='?', default='Data/',
help='Input data path.')
parser.add_argument('--dataset', nargs='?', default='ml-1m',
help='Choose a dataset.')
parser.add_argument('--epochs', type=int, default=50,
help='Number of epochs.')
parser.add_argument('--batch_size', type=int, default=256,
help='Batch size.')
parser.add_argument('--num_factors', type=int, default=8,
help='Embedding size.')
parser.add_argument('--regs', nargs='?', default='[0,0]',
help="Regularization for user and item embeddings.")
parser.add_argument('--num_neg', type=int, default=4,
help='Number of negative instances to pair with a positive instance.')
parser.add_argument('--lr', type=float, default=0.001,
help='Learning rate.')
parser.add_argument('--learner', nargs='?', default='adam',
help='Specify an optimizer: adagrad, adam, rmsprop, sgd')
parser.add_argument('--verbose', type=int, default=1,
help='Show performance per X iterations')
parser.add_argument('--out', type=int, default=1,
help='Whether to save the trained model.')
# parser.add_argument('--mf_pretrain', nargs='?', default='Pretrain/ml-1m_BXGMF1_3.h5',
# help='Specify the pretrain model file for MF part. If empty, no pretrain will be used')
parser.add_argument('--mf_pretrain', nargs='?', default='',
help='Specify the pretrain model file for MF part. If empty, no pretrain will be used')
return parser.parse_args()
def init_normal(shape, name=None):
return initializations.normal(shape, scale=0.01, name=name)
def get_model(num_users, num_items, latent_dim, regs=[0, 0]):
# Input variables
user_input_i = Input(shape=(1,), dtype='int32', name='user_input_i')
user_input_j = Input(shape=(1,), dtype='int32', name='user_input_j')
item_input = Input(shape=(1,), dtype='int32', name='item_input')
MF_Embedding_User = Embedding(input_dim=num_users, output_dim=latent_dim, name='x_user_embedding',
init=init_normal, W_regularizer=l2(regs[0]), input_length=1)
MF_Embedding_Item = Embedding(input_dim=num_items, output_dim=latent_dim, name='x_item_embedding',
init=init_normal, W_regularizer=l2(regs[1]), input_length=1)
# MF_Embedding_User_social = Embedding(input_dim=num_users, output_dim=latent_dim, name='x_user_embedding_social',
# init=init_normal, W_regularizer=l2(regs[0]), input_length=1)
# Crucial to flatten an embedding vector!
user_latent = Flatten()(MF_Embedding_User(user_input_i))
item_latent = Flatten()(MF_Embedding_Item(item_input))
user_latent_social = Flatten()(MF_Embedding_User(user_input_j))
# Element-wise product of user and item embeddings
predict_vector = merge([user_latent, item_latent], mode='mul')
predict_vector_social = merge([user_latent, user_latent_social], mode='mul')
# Final prediction layer
# prediction = Lambda(lambda x: K.sigmoid(K.sum(x)), output_shape=(1,))(predict_vector)
prediction = Dense(1, activation='sigmoid', init='lecun_uniform', name='x_prediction')(predict_vector)
prediction_social = Dense(1, activation='sigmoid', init='lecun_uniform', name='x_prediction_social')(
predict_vector_social)
model = Model(input=[user_input_i, user_input_j, item_input],
output=[prediction, prediction_social])
return model
def load_pretrain_model(model, gmf_model):
# MF embeddings
gmf_user_embeddings = gmf_model.get_layer('x_user_embedding').get_weights()
gmf_item_embeddings = gmf_model.get_layer('x_item_embedding').get_weights()
model.get_layer('x_user_embedding').set_weights(gmf_user_embeddings)
model.get_layer('x_item_embedding').set_weights(gmf_item_embeddings)
# Prediction weights
gmf_prediction = gmf_model.get_layer('x_prediction').get_weights()
new_weights = gmf_prediction[0]
new_b = gmf_prediction[1]
model.get_layer('x_prediction').set_weights([0.5 * new_weights, 0.5 * new_b])
# Social Prediction weights
gmf_prediction_social = gmf_model.get_layer('x_prediction_social').get_weights()
new_weights_social = gmf_prediction_social[0]
new_b_social = gmf_prediction_social[1]
model.get_layer('x_prediction_social').set_weights([0.5 * new_weights_social, 0.5 * new_b_social])
return model
def get_train_instances(train, num_negatives, social_train, social_dict):
user_input_i, user_input_j, item_input, labels, labels_social = [], [], [], [], []
num_users_social = 8146
leng = len(train)
for m in range(0, leng, 5):
u = train[m][0]
if u in social_dict.keys():
b = social_dict[u]
if len(b) == 0:
continue
else:
# i= 0
for i in range(5):
user_input_i.append(train[m + i][0])
item_input.append(train[m + i][1])
labels.append(train[m + i][2])
for i in range(5):
user_input_i.append(train[m + i][0])
item_input.append(train[m + i][1])
labels.append(train[m + i][2])
for n in range(2):
user_input_j.append(b[0])
labels_social.append(1)
b.append(b[0])
del b[0]
social_dict[u] = b
# negative instances
for t1 in range(num_negatives):
j1 = np.random.randint(num_users_social)
while (u, j1) in social_train:
j1 = np.random.randint(num_users_social)
user_input_j.append(j1)
labels_social.append(0)
else:
continue
return user_input_i, user_input_j, item_input, labels, labels_social
if __name__ == '__main__':
# aa = [[1, 0.01],[1,0.02],[1,0.03],[1,0.19],[1,0.2],[1,0.21]]
# aa = [[1,0],[1, 0.02],[1,0.04],[1,0.06],[1,0.08],[1,0.10],[1,0.12],[1,0.14],[1,0.16],[1,0.18],[1,0.20]]
aa=[[1,0.14]]
seed_value = 1623
random.seed(seed_value)
np.random.seed(seed_value)
tf.set_random_seed(seed_value)
for c in aa:
args = parse_args()
num_factors = args.num_factors
regs = eval(args.regs)
num_negatives = args.num_neg
learner = args.learner
learning_rate = args.lr
epochs = args.epochs
batch_size = args.batch_size
verbose = args.verbose
mf_pretrain = args.mf_pretrain
topK = 10
evaluation_threads = 1 # mp.cpu_count()
print("BXGMF1_3_1 arguments: %s" % (args))
model_out_file = 'Pretrain/%s_BXGMF1_3.h5' % (args.dataset)
# Loading data
t1 = time()
dataset = Dataset(args.path + args.dataset)
social_dict, social_train, train, testRatings, testNegatives, valRatings, valNegatives = dataset.socialDict, dataset.socialMatrix, dataset.trainMatrix, dataset.testRatings, dataset.testNegatives, dataset.valRatings, dataset.valNegatives
# print('train.len = ', len(train))
num_users, num_items = 8146,5019
print("Load data done [%.1f s]. #user=%d, #item=%d,#test=%d"
% (time() - t1, num_users, num_items,len(testRatings)))
# Build model
model = get_model(num_users, num_items, num_factors, regs)
if learner.lower() == "adagrad":
model.compile(optimizer=Adagrad(lr=learning_rate), loss='binary_crossentropy', loss_weights=c)
elif learner.lower() == "rmsprop":
model.compile(optimizer=RMSprop(lr=learning_rate), loss='binary_crossentropy', loss_weights=c)
elif learner.lower() == "adam":
model.compile(optimizer=Adam(lr=learning_rate), loss='binary_crossentropy', loss_weights=c)
else:
model.compile(optimizer=SGD(lr=learning_rate), loss='binary_crossentropy', loss_weights=c)
# Load pretrain model
if mf_pretrain != '':
gmf_model = get_model(num_users, num_items, num_factors)
gmf_model.load_weights(mf_pretrain)
model = load_pretrain_model(model, gmf_model)
print("Load pretrained BXGMF1_3(%s) models done. " % (mf_pretrain))
# Init performance
t1 = time()
(hits, ndcgs) = evaluate_model(model, testRatings, testNegatives, topK, evaluation_threads)
hr, ndcg = np.array(hits).mean(), np.array(ndcgs).mean()
print('Init: HR = %.4f, NDCG = %.4f\t [%.1f s]' % (hr, ndcg, time() - t1))
# Train model
best_hr, best_ndcg, best_iter = hr, ndcg, -1
for epoch in range(epochs):
t1 = time()
# Generate training instances
user_input_i, user_input_j, item_input, labels, labels_social = get_train_instances(train, num_negatives,social_train,social_dict)
# Training
hist = model.fit([np.array(user_input_i), np.array(user_input_j), np.array(item_input)], # input
[np.array(labels), np.array(labels_social)], # labels
nb_epoch=1, verbose=0, shuffle=True)
t2 = time()
# Evaluation
if epoch % verbose == 0:
(hits, ndcgs) = evaluate_model(model, valRatings, valNegatives, topK, evaluation_threads)
hr, ndcg, loss = np.array(hits).mean(), np.array(ndcgs).mean(), hist.history['loss'][0]
(hits2, ndcgs2) = evaluate_model(model, testRatings, testNegatives, topK, evaluation_threads)
hr2, ndcg2, loss2 = np.array(hits2).mean(), np.array(ndcgs2).mean(), hist.history['loss'][0]
print(
'Iteration %d [%.1f s]: val HR = %.4f, NDCG = %.4f, loss = %.4f , test HR = %.4f, NDCG = %.4f, loss = %.4f[%.1f s]'
% (epoch, t2 - t1, hr, ndcg, loss, hr2, ndcg2, loss2, time() - t2))
if hr > best_hr:
best_hr, best_ndcg, best_iter = hr, ndcg, epoch
if args.out > 0:
model.save_weights(model_out_file, overwrite=True)
print("End. Best Iteration %d: HR = %.4f, NDCG = %.4f. " % (best_iter, best_hr, best_ndcg))
if args.out > 0:
print("The best XGMF1 model is saved to %s" % (model_out_file))
for i in range(1,20,2):
(hits, ndcgs) = evaluate_model(model, testRatings, testNegatives, i, evaluation_threads)
hr, ndcg = np.array(hits).mean(), np.array(ndcgs).mean()
print('top '+str(i)+': HR='+str(hr)+', NDCG='+str(ndcg))
(hits, ndcgs) = evaluate_model(model, testRatings, testNegatives, 10, evaluation_threads)
hr, ndcg = np.array(hits).mean(), np.array(ndcgs).mean()
print('top ' + str(10) + ': HR=' + str(hr) + ', NDCG=' + str(ndcg))