forked from XifengGuo/CapsNet-Keras
-
Notifications
You must be signed in to change notification settings - Fork 1
/
capsulelayers.py
195 lines (164 loc) · 10.1 KB
/
capsulelayers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
Some key layers used for constructing a Capsule Network. These layers can used to construct CapsNet on other dataset,
not just on MNIST.
*NOTE*: some functions can be implemented in multiple ways, I keep all of them. You can try them for yourself just by
uncommenting them and commenting their counterparts.
Author: Xifeng Guo, E-mail: `guoxifeng1990@163.com`, Github: `https://github.com/XifengGuo/CapsNet-Keras`
"""
import keras.backend as K
import tensorflow as tf
from keras import initializers, layers
class Length(layers.Layer):
"""
Compute the length of vectors. This is used to compute a Tensor that has the same shape with y_true in margin_loss
inputs: shape=[dim_1, ..., dim_{n-1}, dim_n]
output: shape=[dim_1, ..., dim_{n-1}]
"""
def call(self, inputs, **kwargs):
return K.sqrt(K.sum(K.square(inputs), -1))
def compute_output_shape(self, input_shape):
return input_shape[:-1]
class Mask(layers.Layer):
"""
Mask a Tensor with shape=[None, d1, d2] by the max value in axis=1.
Output shape: [None, d2]
"""
def call(self, inputs, **kwargs):
# use true label to select target capsule, shape=[batch_size, num_capsule]
if type(inputs) is list: # true label is provided with shape = [batch_size, n_classes], i.e. one-hot code.
assert len(inputs) == 2
inputs, mask = inputs
mask = K.expand_dims(mask, -1)
else: # if no true label, mask by the max length of vectors of capsules. Used for prediction
x = K.sqrt(K.sum(K.square(inputs), -1, True))
# Enlarge the range of values in x to make max(new_x)=1 and others < 0
x = (x - K.max(x, 1, True)) / K.epsilon() + 1
mask = K.clip(x, 0, 1) # the max value in x clipped to 1 and other to 0
return K.batch_flatten(inputs * mask) # masked inputs, shape = [None, num_capsule * dim_vector]
def compute_output_shape(self, input_shape):
if type(input_shape[0]) is tuple: # true label provided
return tuple([None, input_shape[0][1] * input_shape[0][2]])
else:
return tuple([None, input_shape[1] * input_shape[2]])
def squash(vectors, axis=-1):
"""
The non-linear activation used in Capsule. It drives the length of a large vector to near 1 and small vector to 0
:param vectors: some vectors to be squashed, N-dim tensor
:param axis: the axis to squash
:return: a Tensor with same shape as input vectors
"""
s_squared_norm = K.sum(K.square(vectors), axis, keepdims=True)
scale = s_squared_norm / (1 + s_squared_norm) / K.sqrt(s_squared_norm + K.epsilon())
return scale * vectors
class CapsuleLayer(layers.Layer):
"""
The capsule layer. It is similar to Dense layer. Dense layer has `in_num` inputs, each is a scalar, the output of the
neuron from the former layer, and it has `out_num` output neurons. CapsuleLayer just expand the output of the neuron
from scalar to vector. So its input shape = [None, input_num_capsule, input_dim_vector] and output shape = \
[None, num_capsule, dim_vector]. For Dense Layer, input_dim_vector = dim_vector = 1.
:param num_capsule: number of capsules in this layer
:param dim_vector: dimension of the output vectors of the capsules in this layer
:param num_routings: number of iterations for the routing algorithm
"""
def __init__(self, num_capsule, dim_vector, num_routing=3,
kernel_initializer='glorot_uniform',
bias_initializer='zeros',
**kwargs):
super(CapsuleLayer, self).__init__(**kwargs)
self.num_capsule = num_capsule
self.dim_vector = dim_vector
self.num_routing = num_routing
self.kernel_initializer = initializers.get(kernel_initializer)
self.bias_initializer = initializers.get(bias_initializer)
def build(self, input_shape):
assert len(input_shape) >= 3, "The input Tensor should have shape=[None, input_num_capsule, input_dim_vector]"
self.input_num_capsule = input_shape[1]
self.input_dim_vector = input_shape[2]
# Transform matrix
self.W = self.add_weight(shape=[self.input_num_capsule, self.num_capsule, self.input_dim_vector, self.dim_vector],
initializer=self.kernel_initializer,
name='W')
# Coupling coefficient. The redundant dimensions are just to facilitate subsequent matrix calculation.
self.bias = self.add_weight(shape=[1, self.input_num_capsule, self.num_capsule, 1, 1],
initializer=self.bias_initializer,
name='bias',
trainable=False)
self.built = True
def call(self, inputs, training=None):
# inputs.shape=[None, input_num_capsule, input_dim_vector]
# Expand dims to [None, input_num_capsule, 1, 1, input_dim_vector]
inputs_expand = K.expand_dims(K.expand_dims(inputs, 2), 2)
# Replicate num_capsule dimension to prepare being multiplied by W
# Now it has shape = [None, input_num_capsule, num_capsule, 1, input_dim_vector]
inputs_tiled = K.tile(inputs_expand, [1, 1, self.num_capsule, 1, 1])
"""
# Begin: inputs_hat computation V1 ---------------------------------------------------------------------#
# Compute `inputs * W` by expanding the first dim of W. More time-consuming and need batch_size.
# w_tiled.shape = [batch_size, input_num_capsule, num_capsule, input_dim_vector, dim_vector]
w_tiled = K.tile(K.expand_dims(self.W, 0), [self.batch_size, 1, 1, 1, 1])
# Transformed vectors, inputs_hat.shape = [None, input_num_capsule, num_capsule, 1, dim_vector]
inputs_hat = K.batch_dot(inputs_tiled, w_tiled, [4, 3])
# End: inputs_hat computation V1 ---------------------------------------------------------------------#
"""
# Begin: inputs_hat computation V2 ---------------------------------------------------------------------#
# Compute `inputs * W` by scanning inputs_tiled on dimension 0. This is faster but requires Tensorflow.
# inputs_hat.shape = [None, input_num_capsule, num_capsule, 1, dim_vector]
inputs_hat = tf.scan(lambda ac, x: K.batch_dot(x, self.W, [3, 2]),
elems=inputs_tiled,
initializer=K.zeros([self.input_num_capsule, self.num_capsule, 1, self.dim_vector]))
# End: inputs_hat computation V2 ---------------------------------------------------------------------#
"""
# Begin: routing algorithm V1, dynamic ------------------------------------------------------------#
def body(i, b, outputs):
c = tf.nn.softmax(b, dim=2) # dim=2 is the num_capsule dimension
outputs = squash(K.sum(c * inputs_hat, 1, keepdims=True))
if i != 1:
b = b + K.sum(inputs_hat * outputs, -1, keepdims=True)
return [i-1, b, outputs]
cond = lambda i, b, inputs_hat: i > 0
loop_vars = [K.constant(self.num_routing), self.bias, K.sum(inputs_hat, 1, keepdims=True)]
shape_invariants = [tf.TensorShape([]),
tf.TensorShape([None, self.input_num_capsule, self.num_capsule, 1, 1]),
tf.TensorShape([None, 1, self.num_capsule, 1, self.dim_vector])]
_, _, outputs = tf.while_loop(cond, body, loop_vars, shape_invariants)
# End: routing algorithm V1, dynamic ------------------------------------------------------------#
"""
# Begin: routing algorithm V2, static -----------------------------------------------------------#
# Routing algorithm V2. Use iteration. V2 and V1 both work without much difference on performance
assert self.num_routing > 0, 'The num_routing should be > 0.'
for i in range(self.num_routing):
c = tf.nn.softmax(self.bias, dim=2) # dim=2 is the num_capsule dimension
# outputs.shape=[None, 1, num_capsule, 1, dim_vector]
outputs = squash(K.sum(c * inputs_hat, 1, keepdims=True))
# last iteration needs not compute bias which will not be passed to the graph any more anyway.
if i != self.num_routing - 1:
# self.bias = K.update_add(self.bias, K.sum(inputs_hat * outputs, [0, -1], keepdims=True))
self.bias += K.sum(inputs_hat * outputs, -1, keepdims=True)
# tf.summary.histogram('BigBee', self.bias) # for debugging
# End: routing algorithm V2, static ------------------------------------------------------------#
return K.reshape(outputs, [-1, self.num_capsule, self.dim_vector])
def compute_output_shape(self, input_shape):
return tuple([None, self.num_capsule, self.dim_vector])
def PrimaryCap(inputs, dim_vector, n_channels, kernel_size, strides, padding):
"""
Apply Conv2D `n_channels` times and concatenate all capsules
:param inputs: 4D tensor, shape=[None, width, height, channels]
:param dim_vector: the dim of the output vector of capsule
:param n_channels: the number of types of capsules
:return: output tensor, shape=[None, num_capsule, dim_vector]
"""
output = layers.Conv2D(filters=dim_vector*n_channels, kernel_size=kernel_size, strides=strides, padding=padding,
name='primarycap_conv2d')(inputs)
outputs = layers.Reshape(target_shape=[-1, dim_vector], name='primarycap_reshape')(output)
return layers.Lambda(squash, name='primarycap_squash')(outputs)
"""
# The following is another way to implement primary capsule layer. This is much slower.
# Apply Conv2D `n_channels` times and concatenate all capsules
def PrimaryCap(inputs, dim_vector, n_channels, kernel_size, strides, padding):
outputs = []
for _ in range(n_channels):
output = layers.Conv2D(filters=dim_vector, kernel_size=kernel_size, strides=strides, padding=padding)(inputs)
outputs.append(layers.Reshape([output.get_shape().as_list()[1] ** 2, dim_vector])(output))
outputs = layers.Concatenate(axis=1)(outputs)
return layers.Lambda(squash)(outputs)
"""