Code for javascript visualizations of aligned RxR instructions and pose traces.
First, download the RxR data (guide annotations and pose traces), the Matterport3D dataset, and clone the Matterport3D simulator for the navigation connectivity graphs.
In this directory, create symlinks to these resources:
cd visualizations
ln -s <PATH_TO_MATTERPORT3D_DATASET> mp3d
ln -s <PATH_TO_RXR_DATA> rxr_data
ln -s <PATH_TO_MATTERPORT3D_SIMULATOR> Matterport3DSimulator
where <PATH_TO_MATTERPORT3D_DATASET>
contains the unzipped Matterport3D data
(e.g., v1/scans/..
), <PATH_TO_RXR_DATA>
contains the RxR json lines files
and the pose_traces
directory, and <PATH_TO_MATTERPORT3D_SIMULATOR>
is the
cloned repo.
Install python dependencies:
pip3 install absl-py
pip3 install numpy
To set up the visualization for a given dataset split and instruction id, run:
python3 setup.py \
--split rxr_train \
--instruction_id 46944 \ # Corresponds to Figure 4 in the paper.
--logtostderr
python3 -m http.server
and browse to localhost:8000/first_person.html.
Rendering may take a few seconds depending on the size of the mesh. The split
argument must be one of rxr_train
, rxr_val_seen
, rxr_val_unseen
.
Coming soon!