-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathclip.py
359 lines (287 loc) · 9.06 KB
/
clip.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import io
import base64
from os import path
from abc import ABC, abstractmethod
from typing import Union
from PIL import Image
from pydantic import BaseModel
from transformers import CLIPProcessor, CLIPModel, SiglipModel, AutoTokenizer, AutoProcessor
from sentence_transformers import SentenceTransformer
import open_clip
import torch
import json
import asyncio
import numpy as np
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
class ClipInput(BaseModel):
texts: list = []
images: list = []
class ClipResult:
text_vectors: list = []
image_vectors: list = []
def __init__(self, text_vectors, image_vectors):
self.text_vectors = text_vectors
self.image_vectors = image_vectors
class ClipInferenceABS(ABC):
"""
Abstract class for Clip Inference models that should be inherited from.
"""
@abstractmethod
def vectorize(self, payload: ClipInput) -> ClipResult:
...
class ClipInferenceSentenceTransformers(ClipInferenceABS):
img_model: SentenceTransformer
text_model: SentenceTransformer
lock: Lock
def __init__(self, cuda, cuda_core):
self.lock = Lock()
device = 'cpu'
if cuda:
device = cuda_core
self.img_model = SentenceTransformer('./models/clip', device=device)
self.text_model = SentenceTransformer('./models/text', device=device)
def vectorize(self, payload: ClipInput) -> ClipResult:
"""
Vectorize data from Weaviate.
Parameters
----------
payload : ClipInput
Input to the Clip model.
Returns
-------
ClipResult
The result of the model for both images and text.
"""
text_vectors = []
if payload.texts:
try:
self.lock.acquire()
text_vectors = (
self.text_model
.encode(payload.texts, convert_to_tensor=True)
.tolist()
)
finally:
self.lock.release()
image_vectors = []
if payload.images:
try:
self.lock.acquire()
image_files = [_parse_image(image) for image in payload.images]
image_vectors = (
self.img_model
.encode(image_files, convert_to_tensor=True)
.tolist()
)
finally:
self.lock.release()
return ClipResult(
text_vectors=text_vectors,
image_vectors=image_vectors,
)
class ClipInferenceOpenAI:
clip_model: CLIPModel
processor: CLIPProcessor
lock: Lock
def __init__(self, cuda, cuda_core):
self.lock = Lock()
self.device = 'cpu'
if cuda:
self.device=cuda_core
self.clip_model = CLIPModel.from_pretrained('./models/openai_clip').to(self.device)
self.processor = CLIPProcessor.from_pretrained('./models/openai_clip_processor')
def vectorize(self, payload: ClipInput) -> ClipResult:
"""
Vectorize data from Weaviate.
Parameters
----------
payload : ClipInput
Input to the Clip model.
Returns
-------
ClipResult
The result of the model for both images and text.
"""
text_vectors = []
if payload.texts:
try:
self.lock.acquire()
inputs = self.processor(
text=payload.texts,
return_tensors="pt",
padding=True,
).to(self.device)
# Taken from the HuggingFace source code of the CLIPModel
text_outputs = self.clip_model.text_model(**inputs)
text_embeds = text_outputs[1]
text_embeds = self.clip_model.text_projection(text_embeds)
# normalized features
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
text_vectors = text_embeds.tolist()
finally:
self.lock.release()
image_vectors = []
if payload.images:
try:
self.lock.acquire()
image_files = [_parse_image(image) for image in payload.images]
inputs = self.processor(
images=image_files,
return_tensors="pt",
padding=True,
).to(self.device)
# Taken from the HuggingFace source code of the CLIPModel
vision_outputs = self.clip_model.vision_model(**inputs)
image_embeds = vision_outputs[1]
image_embeds = self.clip_model.visual_projection(image_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
image_vectors = image_embeds.tolist()
finally:
self.lock.release()
return ClipResult(
text_vectors=text_vectors,
image_vectors=image_vectors,
)
class ClipInferenceOpenCLIP:
lock: Lock
def __init__(self, cuda, cuda_core):
self.lock = Lock()
self.device = 'cpu'
if cuda:
self.device=cuda_core
cache_dir = './models/openclip'
with open(path.join(cache_dir, "config.json")) as user_file:
config = json.load(user_file)
model_name = config['model_name']
pretrained = config['pretrained']
model, _, preprocess = open_clip.create_model_and_transforms(model_name, pretrained=pretrained, cache_dir=cache_dir, device=self.device)
if cuda:
model = model.to(device=self.device)
self.clip_model = model
self.preprocess = preprocess
self.tokenizer = open_clip.get_tokenizer(model_name)
def vectorize(self, payload: ClipInput) -> ClipResult:
"""
Vectorize data from Weaviate.
Parameters
----------
payload : ClipInput
Input to the Clip model.
Returns
-------
ClipResult
The result of the model for both images and text.
"""
text_vectors = []
if payload.texts:
try:
self.lock.acquire()
with torch.no_grad(), torch.cuda.amp.autocast():
text = self.tokenizer(payload.texts).to(self.device)
text_features = self.clip_model.encode_text(text).to(self.device)
text_features /= text_features.norm(dim=-1, keepdim=True)
text_vectors = text_features.tolist()
finally:
self.lock.release()
image_vectors = []
if payload.images:
try:
self.lock.acquire()
image_files = [self.preprocess_image(image) for image in payload.images]
image_vectors = [self.vectorize_image(image) for image in image_files]
finally:
self.lock.release()
return ClipResult(
text_vectors=text_vectors,
image_vectors=image_vectors,
)
def preprocess_image(self, base64_encoded_image_string):
image_bytes = base64.b64decode(base64_encoded_image_string)
img = Image.open(io.BytesIO(image_bytes))
return self.preprocess(img).unsqueeze(0).to(device=self.device)
def vectorize_image(self, image):
with torch.no_grad(), torch.cuda.amp.autocast():
image_features = self.clip_model.encode_image(image).to(self.device)
image_features /= image_features.norm(dim=-1, keepdim=True)
return image_features.tolist()[0]
class ClipInferenceSigCLIP:
lock: Lock
def __init__(self, cuda, cuda_core):
self.lock = Lock()
self.device = 'cpu'
if cuda:
self.device=cuda_core
model_name = ''
cache_dir = './models/siglip'
with open(path.join(cache_dir, "config.json")) as user_file:
config = json.load(user_file)
model_name = config['_name_or_path']
self.model: SiglipModel = SiglipModel.from_pretrained(cache_dir)
self.tokenizer = AutoTokenizer.from_pretrained(cache_dir)
self.processor = AutoProcessor.from_pretrained(model_name, cache_dir=cache_dir)
def vectorize(self, payload: ClipInput) -> ClipResult:
"""
Vectorize data from Weaviate.
Parameters
----------
payload : ClipInput
Input to the Clip model.
Returns
-------
ClipResult
The result of the model for both images and text.
"""
text_vectors = []
if payload.texts:
with self.lock, torch.no_grad():
input_ids = self.tokenizer(payload.texts, return_tensors="pt", truncation=True, padding=True).to(self.device)
text_vectors = self.model.get_text_features(**input_ids).to(self.device).tolist()
image_vectors = []
if payload.images:
with self.lock, torch.no_grad():
image_files = [_parse_image(image) for image in payload.images]
inputs = self.processor(images=image_files, return_tensors="pt").to(self.device)
image_vectors = self.model.get_image_features(**inputs).to(self.device).tolist()
return ClipResult(
text_vectors=text_vectors,
image_vectors=image_vectors,
)
class Clip:
clip: Union[ClipInferenceOpenAI, ClipInferenceSentenceTransformers, ClipInferenceOpenCLIP]
executor: ThreadPoolExecutor
def __init__(self, cuda, cuda_core):
self.executor = ThreadPoolExecutor()
if path.exists('./models/openai_clip'):
self.clip = ClipInferenceOpenAI(cuda, cuda_core)
elif path.exists('./models/openclip'):
self.clip = ClipInferenceOpenCLIP(cuda, cuda_core)
elif path.exists('./models/siglip'):
self.clip = ClipInferenceSigCLIP(cuda, cuda_core)
else:
self.clip = ClipInferenceSentenceTransformers(cuda, cuda_core)
async def vectorize(self, payload: ClipInput):
"""
Vectorize data from Weaviate.
Parameters
----------
payload : ClipInput
Input to the Clip model.
Returns
-------
ClipResult
The result of the model for both images and text.
"""
return await asyncio.wrap_future(self.executor.submit(self.clip.vectorize, payload))
# _parse_image decodes the base64 and parses the image bytes into a
# PIL.Image. If the image is not in RGB mode, e.g. for PNGs using a palette,
# it will be converted to RGB. This makes sure that they work with
# SentenceTransformers/Huggingface Transformers which seems to require a (3,
# height, width) tensor
def _parse_image(base64_encoded_image_string):
image_bytes = base64.b64decode(base64_encoded_image_string)
img = Image.open(io.BytesIO(image_bytes))
if img.mode != 'RGB':
img = img.convert('RGB')
return img