-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmeta.py
35 lines (31 loc) · 1.28 KB
/
meta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import json
from os import path
from transformers import CLIPConfig
from transformers import AutoConfig
class Meta:
def __init__(self):
if path.exists('./models/openai_clip'):
# OpenAI CLIP Models
self._config = CLIPConfig.from_pretrained('./models/openai_clip').to_dict()
elif path.exists('./models/openclip'):
# OpenCLIP Models
with open(path.join('./models/openclip', "config.json")) as config_file:
self._config = json.load(config_file)
elif path.exists('./models/siglip'):
# SigLip Models
with open(path.join('./models/siglip', "config.json")) as config_file:
self._config = json.load(config_file)
else:
# Non OpenAI CLIP Models
self._config = {
'clip_model': CLIPConfig.from_pretrained('./models').to_dict(),
}
try:
# try as if it was a regular hf model
self._config['text_model'] = AutoConfig.from_pretrained('./models/text').to_dict()
except (RuntimeError, TypeError, NameError, Exception, EnvironmentError):
# now try as if it's a ST CLIP model
self._config['text_model'] = AutoConfig.from_pretrained('./models/text/0_CLIPModel').to_dict()
self._config = json.loads(json.dumps(self._config, default=str))
async def get(self):
return self._config