-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
155 lines (131 loc) · 5.79 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import argparse
import os
import random
import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.parallel
import torch.optim as optim
import torchvision.utils as vutils
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
from model import AODnet
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', required=False, default='pix2pix', help='')
parser.add_argument('--dataroot', required=True, help='path to trn dataset')
parser.add_argument('--valDataroot', required=True, help='path to val dataset')
parser.add_argument('--valBatchSize', type=int, default=32, help='input batch size')
parser.add_argument('--cuda', action='store_true', help='use cuda?')
parser.add_argument('--lr', type=float, default=1e-4, help='Learning Rate. Default=1e-4')
parser.add_argument('--threads', type=int, default=4, help='number of threads for data loader to use, if Your OS is window, please set to 0')
parser.add_argument('--exp', default='pretrain', help='folder to model checkpoints')
parser.add_argument('--printEvery', type=int, default=50, help='number of batches to print average loss ')
parser.add_argument('--batchSize', type=int, default=32, help='training batch size')
parser.add_argument('--epochSize', type=int, default=840, help='number of batches as one epoch (for validating once)')
parser.add_argument('--nEpochs', type=int, default=10, help='number of epochs for training')
args = parser.parse_args()
print(args)
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
torch.cuda.manual_seed_all(args.manualSeed)
print("Random Seed: ", args.manualSeed)
#===== Dataset =====
def getLoader(datasetName, dataroot, batchSize, workers,
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5), split='train', shuffle=True, seed=None):
if datasetName == 'pix2pix':
from datasets.pix2pix import pix2pix as commonDataset
import transforms.pix2pix as transforms
if split == 'train':
dataset = commonDataset(root=dataroot,
transform=transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean, std),
]),
seed=seed)
else:
dataset = commonDataset(root=dataroot,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean, std),
]),
seed=seed)
dataloader = torch.utils.data.DataLoader(dataset,
batch_size=batchSize,
shuffle=shuffle,
num_workers=int(workers))
return dataloader
trainDataloader = getLoader(args.dataset,
args.dataroot,
args.batchSize,
args.threads,
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
split='train',
shuffle=True,
seed=args.manualSeed)
valDataloader = getLoader(args.dataset,
args.valDataroot,
args.valBatchSize,
args.threads,
mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5),
split='val',
shuffle=False,
seed=args.manualSeed)
#===== DehazeNet =====
print('===> Building model')
net = AODnet()
if args.cuda:
net = net.cuda()
#===== Loss function & optimizer =====
criterion = torch.nn.MSELoss()
if args.cuda:
criterion = criterion.cuda()
optimizer = torch.optim.Adam(net.parameters(), lr=args.lr, weight_decay=0.0001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=53760, gamma=0.5)
#===== Training and validation procedures =====
def train(epoch):
net.train()
epoch_loss = 0
for iteration, batch in enumerate(trainDataloader, 0):
varIn, varTar = Variable(batch[0]), Variable(batch[1])
varIn, varTar = varIn.float(), varTar.float()
if args.cuda:
varIn = varIn.cuda()
if args.cuda:
varTar = varTar.cuda()
# print(iteration)
optimizer.zero_grad()
loss = criterion(net(varIn), varTar)
# print(loss)
epoch_loss += loss.data[0]
loss.backward()
optimizer.step()
if iteration%args.printEvery == 0:
print("===> Epoch[{}]({}/{}): Avg. Loss: {:.4f}".format(epoch, iteration+1, len(trainDataloader), epoch_loss/args.printEvery))
epoch_loss = 0
def validate():
net.eval()
avg_mse = 0
for _, batch in enumerate(valDataloader, 0):
varIn, varTar = Variable(batch[0]), Variable(batch[1])
varIn, varTar = varTar.float(), varIn.float()
if args.cuda:
varIn = varIn.cuda()
if args.cuda:
varTar = varTar.cuda()
prediction = net(varIn)
mse = criterion(prediction, varTar)
avg_mse += mse.data[0]
print("===>Avg. Loss: {:.4f}".format(avg_mse/len(valDataloader)))
def checkpoint(epoch):
model_out_path = "./model_pretrained/AOD_net_epoch_relu_{}.pth".format(epoch)
torch.save(net, model_out_path)
print("Checkpoint saved to {}".format(model_out_path))
#===== Main procedure =====
for epoch in range(1, args.nEpochs + 1):
train(epoch)
validate()
checkpoint(epoch)