|
| 1 | +--- |
| 2 | +title: "使用 wechaty langchain 部署私有 chatgpt" |
| 3 | +author: bestk |
| 4 | +categories: article |
| 5 | +tags: |
| 6 | + - chatgpt |
| 7 | + - langchain |
| 8 | +image: /assets/2023/07-wechaty-chat-with-langchain/logo.webp |
| 9 | +--- |
| 10 | + |
| 11 | + |
| 12 | +WeChaty 是一个基于 Node.js 的开源微信机器人框架,而 LangChain 是一个用于部署私有化 GPT 模型的工具。通过结合 WeChaty 和 LangChain,你可以创建一个私有化的 GPT 机器人,使其在微信平台上运行。 |
| 13 | + |
| 14 | +Setup: |
| 15 | + |
| 16 | +我们使用 `wechaty-puppet-wechat4u` |
| 17 | + |
| 18 | +```Text |
| 19 | +package.json: |
| 20 | +"wechaty": "^1.20.2", |
| 21 | +"wechaty-puppet-wechat4u": "1.14.1" |
| 22 | +"langchain": "^0.0.102", |
| 23 | +"@pinecone-database/pinecone": "^0.1.6", |
| 24 | +"pdf-parse": "^1.1.1", // 篇幅原因这里只演示 pdf |
| 25 | +``` |
| 26 | + |
| 27 | +```javascript |
| 28 | +import { WechatyBuilder} from 'wechaty' |
| 29 | + |
| 30 | +const wechaty = WechatyBuilder.build({ |
| 31 | + name: 'wechaty-chatgpt', |
| 32 | + puppet: 'wechaty-puppet-wechat4u', |
| 33 | + puppetOptions: { |
| 34 | + uos: true, |
| 35 | + }, |
| 36 | +}); |
| 37 | + |
| 38 | +``` |
| 39 | + |
| 40 | +设置 pinecone ,openai |
| 41 | + |
| 42 | +```bash |
| 43 | +PROMPTLAYER_API_KEY=pl_... # PROMPTLAYER 是一个用于记录 api 调用时 prompt 与 response 的工具 |
| 44 | +PINECONE_API_KEY=89e... |
| 45 | +PINECONE_ENVIRONMENT=us-west4-gcp-free |
| 46 | +PINECONE_INDEX=... |
| 47 | +``` |
| 48 | + |
| 49 | +以下代码为当接收到支持的文件对文件进行向量化成功后返回提示 |
| 50 | + |
| 51 | + ```javascript |
| 52 | + wechaty.on('message', async message => { |
| 53 | + const contact = message.talker(); |
| 54 | + currentAdminUser = contact.payload.alias === process.env.ADMIN |
| 55 | + const receiver = message.listener(); |
| 56 | + let content = message.text().trim(); |
| 57 | + const room = message.room(); |
| 58 | + const target = room || contact; |
| 59 | + const isText = message.type() === wechaty.Message.Type.Text; |
| 60 | + const isAudio = message.type() === wechaty.Message.Type.Audio; |
| 61 | + const isFile = message.type() === wechaty.Message.Type.Attachment; |
| 62 | + |
| 63 | + if (isFile) { |
| 64 | + const filebox = await message.toFileBox() |
| 65 | + if (supportFileType(filebox.mediaType)) { |
| 66 | + await saveFile(filebox) |
| 67 | + await loadDocuments() |
| 68 | + await send(room || contact, `${filebox.name} Embeddings 成功`) |
| 69 | + return |
| 70 | + } |
| 71 | + } |
| 72 | + }) |
| 73 | + ``` |
| 74 | + |
| 75 | + |
| 76 | + |
| 77 | +langchain 相关代码 |
| 78 | + |
| 79 | + ```javascript |
| 80 | + import { PineconeClient } from "@pinecone-database/pinecone"; |
| 81 | + import dotenv from 'dotenv'; |
| 82 | + import { VectorDBQAChain } from "langchain/chains"; |
| 83 | + import { DirectoryLoader } from "langchain/document_loaders"; |
| 84 | + import { DocxLoader } from "langchain/document_loaders/fs/docx"; |
| 85 | + import { PDFLoader } from "langchain/document_loaders/fs/pdf"; |
| 86 | + import { TextLoader } from "langchain/document_loaders/fs/text"; |
| 87 | + import { OpenAIEmbeddings } from "langchain/embeddings/openai"; |
| 88 | + import { PromptLayerOpenAI } from "langchain/llms/openai"; |
| 89 | + import { RecursiveCharacterTextSplitter } from "langchain/text_splitter"; |
| 90 | + import { PineconeStore } from "langchain/vectorstores"; |
| 91 | + |
| 92 | + dotenv.config(); |
| 93 | + const client = new PineconeClient(); |
| 94 | + |
| 95 | + await client.init({ |
| 96 | + apiKey: process.env.PINECONE_API_KEY, |
| 97 | + environment: process.env.PINECONE_ENVIRONMENT, |
| 98 | + }); |
| 99 | + |
| 100 | + const pineconeIndex = client.Index(process.env.PINECONE_INDEX); |
| 101 | + |
| 102 | + |
| 103 | + async function loadDocuments(directory = 'resource') { |
| 104 | + console.log('loadDocuments...') |
| 105 | + const loader = new DirectoryLoader(directory, |
| 106 | + { |
| 107 | + ".pdf": (path) => new PDFLoader(path), |
| 108 | + ".txt": (path) => new TextLoader(path), |
| 109 | + ".doc": (path) => new DocxLoader(path), |
| 110 | + ".docx": (path) => new DocxLoader(path), |
| 111 | + }); |
| 112 | + // 将数据转成 document 对象,每个文件会作为一个 document |
| 113 | + const rawDocuments = await loader.load(); |
| 114 | + console.log(`documents: ${rawDocuments.length}`); |
| 115 | + |
| 116 | + // 初始化加载器 |
| 117 | + const textSplitter = new RecursiveCharacterTextSplitter({ chunkSize: 500 }); |
| 118 | + // 切割加载的 document |
| 119 | + const splitDocs = await textSplitter.splitDocuments(rawDocuments); |
| 120 | + |
| 121 | + // 持久化数据 |
| 122 | + // const docsearch = await Chroma.fromDocuments(splitDocs, embeddings, { collectionName: "private_doc" }); |
| 123 | + // docsearch.persist(); |
| 124 | + |
| 125 | + |
| 126 | + await PineconeStore.fromDocuments(splitDocs, new OpenAIEmbeddings(), { |
| 127 | + pineconeIndex, |
| 128 | + }); |
| 129 | + console.log(`send to PineconeStore`); |
| 130 | + |
| 131 | + } |
| 132 | + |
| 133 | + |
| 134 | + async function askDocument(question) { |
| 135 | + const llm = new PromptLayerOpenAI({ plTags: ["langchain-requests", "chatbot"] }) |
| 136 | + // 初始化 openai 的 embeddings 对象 |
| 137 | + |
| 138 | + // 加载数据 |
| 139 | + const vectorStore = await PineconeStore.fromExistingIndex( |
| 140 | + new OpenAIEmbeddings(), |
| 141 | + { pineconeIndex } |
| 142 | + ); |
| 143 | + |
| 144 | + /* Search the vector DB independently with meta filters */ |
| 145 | + const chain = VectorDBQAChain.fromLLM(llm, vectorStore, { |
| 146 | + k: 1, |
| 147 | + returnSourceDocuments: true, |
| 148 | + }); |
| 149 | + const response = await chain.call({ query: question }); |
| 150 | + console.log(response); |
| 151 | + |
| 152 | + // const response = await vectorStore.similaritySearch(question, 1); |
| 153 | + // console.log(response); |
| 154 | + |
| 155 | + return response.text |
| 156 | + } |
| 157 | + |
| 158 | + function supportFileType(mediaType) { |
| 159 | + const types = ['doc', 'docx', , 'pdf', 'text'] |
| 160 | + return types.filter(e => mediaType.includes(e)).length > 0 |
| 161 | + } |
| 162 | + |
| 163 | + |
| 164 | + export { askDocument, loadDocuments, supportFileType }; |
| 165 | + ``` |
0 commit comments