forked from zonghua94/mnist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist_bi_lstm.py
92 lines (75 loc) · 3.07 KB
/
mnist_bi_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
def compute_accuracy(v_x, v_y):
global pred
#input v_x to nn and get the result with y_pre
y_pre = sess.run(pred, feed_dict={x:v_x})
#find how many right
correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_y,1))
#calculate average
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
#get input content
result = sess.run(accuracy,feed_dict={x: v_x, y: v_y})
return result
def Bi_lstm(X):
lstm_f_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
lstm_b_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units, forget_bias=1.0, state_is_tuple=True)
return tf.contrib.rnn.static_bidirectional_rnn(lstm_f_cell, lstm_b_cell, X, dtype=tf.float32)
def RNN(X,weights,biases):
# hidden layer for input
X = tf.reshape(X, [-1, n_inputs])
X_in = tf.matmul(X, weights['in']) + biases['in']
#reshape data put into bi-lstm cell
X_in = tf.reshape(X_in, [-1,n_steps, n_hidden_units])
X_in = tf.transpose(X_in, [1,0,2])
X_in = tf.reshape(X_in, [-1, n_hidden_units])
X_in = tf.split(X_in, n_steps)
outputs, _, _ = Bi_lstm(X_in)
#hidden layer for output as the final results
results = tf.matmul(outputs[-1], weights['out']) + biases['out']
return results
#load mnist data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# parameters init
l_r = 0.001
training_iters = 100000
batch_size = 128
n_inputs = 28
n_steps = 28
n_hidden_units = 128
n_classes = 10
#define placeholder for input
x = tf.placeholder(tf.float32, [None, n_steps, n_inputs])
y = tf.placeholder(tf.float32, [None, n_classes])
# define w and b
weights = {
'in': tf.Variable(tf.random_normal([n_inputs,n_hidden_units])),
'out': tf.Variable(tf.random_normal([2*n_hidden_units,n_classes]))
}
biases = {
'in': tf.Variable(tf.constant(0.1,shape=[n_hidden_units,])),
'out': tf.Variable(tf.constant(0.1,shape=[n_classes,]))
}
pred = RNN(x, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred,labels=y))
train_op = tf.train.AdamOptimizer(l_r).minimize(cost)
correct_pred = tf.equal(tf.argmax(pred,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
#init session
sess = tf.Session()
#init all variables
sess.run(tf.global_variables_initializer())
#start training
# x_image,x_label = mnist.test.next_batch(500)
# x_image = x_image.reshape([500, n_steps, n_inputs])
for i in range(500):
#get batch to learn easily
batch_x, batch_y = mnist.train.next_batch(batch_size)
batch_x = batch_x.reshape([batch_size, n_steps, n_inputs])
sess.run(train_op,feed_dict={x: batch_x, y: batch_y})
if i % 50 == 0:
print(sess.run(accuracy,feed_dict={x: batch_x, y: batch_y,}))
test_data = mnist.test.images.reshape([-1, n_steps, n_inputs])
test_label = mnist.test.labels
#print("Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label}))
print("Testing Accuracy: ", compute_accuracy(test_data, test_label))